

Dynamic Simulation System Full Lineup Catalogue

IMV CORPORATION

IMV America, Inc. 11520 Blair St., Holland, MI 49424, USA tel.+1-657-272-0270

https://we-are-imv.com/en/ *The specifications and design are subject to change without notice.

> April 2023 Cat No.2304③DSS_US

World's leading supplier of highreliability vibration test systems

Benefiting a wide range of industries through quality and reliability improvements

Since it was founded in 1957, IMV has been proud to be at the forefront of research and development in vibration testing systems, supplying technically-advanced systems with safety and reliability as first priorities.

The range of IMV vibration test systems includes single-axis and simultaneous muti-axis systems for up to six degrees of freedom simulation. A range of vibration and diagnostic instruments are also available. Engineering consultancy services to assist customers with vibration measurement, analysis and testing can also be provided.

IMV designs, manufactures, markets and maintains vibration-test systems, which simulate actual vibration environments, and measuring systems, which record and analyze vibration created or experienced by a product. IMV can also provide test laboratory and consultancy services.

We are proud to contribute to the safety and reliability of a wide range of products by working with the automotive, aerospace, electrical machinery and structural engineering industries to solve problems caused by vibration. Our policy is to continue to develop our skills and products to ensure we continue to provide the best possible service to our clients.

INDEX

Series Arrangements	» P.03
[Single-axis systems] Vibration Test Systems	
Ecology	» P.07
High-Grade Range A-series	» P.09
Standard Range i-series	» P.13
Large-Displacement Range J-series	» P.14
High-Excitation-Force Water-Cooled Range K-series	» P.15
Low Acoustic Noise and Compact Range m-series	» P.17
Optional Units	» P.19
[Multi-axis systems] Vibration Test Systems	
2-Axis Changeover Systems DC-series	» P.29
3-Axis Changeover Systems TC-series	» P.30
2-Axis Simultaneous Systems DS-series	» P.31
3-Axis Simultaneous Systems TS-series	» P.32
6 Degrees of Freedom Systems TTS-series	» P.33
[Vibration Controller] K2+	
Vibration Controller K2+	» P.36
[Case Studies]	
Automotive Parts	» P.42
Electronic Parts	» P.47
Transportation Test	» P.48
Construction Machinery	» P.49
Earthquake Resistance	» P.50
Aerospace	» P.51
Other Applications	» P.52

[Environmental Test Systems] Vibration Test System	
Chamber for Vertical Excitation	» P.54
Chamber for both Vertical and Horizontal Excitation	» P.55
Chamber for Multi-Axis Excitation	» P.57
Prefabricated Chamber for Large Specimens	» P.58
Technical Guidance	» P.59
Conversion Table	» P.66
IMV Test Lab Network	» P.67
Coverage	» P.69
System Layout	» P.70

Series Arrangements

Vibration Test Systems Lineup Chart

Vibration Test Systems Single-axis systems

High-Grade Range	A-series	» P.09
Standard Range	-series	» P.13
Large-Displacement Range	J-series	» P.14
High-Excitation-Force Water-Cooled Range	K-series	» P.15
Low Acoustic Noise and Compact Range	M -series	» P.17
Optional Units		» P.19

Approach to low noise

Careful attention to the design of the top cover using airflow modeling reduces the air velocity and the resulting acoustic noise.

Upper (armature) support system PS Guide

High vibration levels place extreme stress on the main parts of the vibration generator. The Parallel Slope Guide (PSG) uses a patented design to achieve a highly durable armature support which also offers excellent performance. The design provides sufficient

stiffness to cross-axis forces and produces low distortion at all levels of vibration.

World-class air-cooled shaker systems

By taking advantage of the latest finite-element analysis tools, the magnetic circuit and cooling designs used in the IMV air-cooled range enable higher force ratings (up to 16,700 lbf) to be achieved. Air-cooled systems are lower in cost both to install and to maintain compared to water-cooled systems.

05

Simple confirmation of CO2 reduction and electricity consumption

When combined with the IMV 'K2' vibration controller, the ECO-shaker system computes and displays electricity savings in real-time. A report of energy consumption can be produced after each test.

Energy-saving results screen

IMV-Smart technology

Automatic energy savings

The ECO-shaker is an electrodynamic vibration test system in which the output of the power amplifier, power input to the vibration generator and cooling blower speed are automatically optimized according to the payload and test requirements.

Complicated manual settings are no longer needed.

Changes in the operating environment or in test level are accommodated without operator intervention

[Features]

Calculation

method

Conditions

· Only vibration test levels need to be set

· Automatic response to changes in sample under test or test level

· Continuous monitoring of temperatures used to control blower speed

*Operation condition selection system and method (JP Patent No. 4231095) *Operation condition selection system and program (JP Patent No. 4263229

Effects of energy-saving

Vibration controller K2+

Comparison of power consumption with the conventional system

Operation of ISM-EM (Power consumption)

Minimizing the energy consumption of a conventional vibration test system would require complex calculation and adjustments to suit the test requirements. The Integrated Shaker Manager (ISM-EM) technology incorporated within the ECO-shaker system automatically controls the power amplifier output, field level and blower speed to achieve the maximum efficiency under all test conditions.

Upgrading existing systems

ISM-EM technology can be added to existing IMV vibration test systems by installing the ISM-EM module and additional software. Contact IMV or your local distributor for further information and delivery.

Existing system

ISM-EM unit

Example design

Improvement of working conditions

Ensuring that the vibration system is operating efficiently not only saves money - it also can reduce noise levels as well as heat dissipation into the workplace. This improves the working environment and can simplify initial installation.

07

Vibration Test Systems Single-axis Systems

Energy-saving vibration test system [ECO-Shaker]

Vibration test systems consume a lot of electricity. IMV has developed environmentally friendly products which minimize the required electric power and cut down electric consumption and CO₂ emissions. Thanks to its great contributions toward energy efficiency, the technology featured in the ECO-Shaker received the Chairman's Award from the Machinery Federation in 2012.

[Saving energy technology] ISM-EM EM: Energy Manager

Contribution to the environment

Many countries have introduced legislation, such as the Clean Development Mechanism in the Kyoto Protocol and the EU Energy Efficiency Directive, obliging businesses and their products to be more energy-efficient. The IMV ECO-shaker systems help to meet these regulations.

A new standard created through listening to our customers.

A wider range of test requirements and higher test specifications.

A-series meets the needs for such a versatile test environment.

Advanced automatic energy-saving, high level of functionality and a protected test environment.

A-series provides a better working environment for vibration testing.

[Improvement of performance] [User-friendly and Secure] [User first principle]

Improvement of performance

A-series meets the demand

Improvement in excitation force

When compared with the conventional i- & J-series, the A-series has increased relative excitation force. ·Increased force per system power requirement Increased force per system mass

Increased force per system size

Increase in frequency range

In addition to the increased displacement of 3.0 inp-p, the maximum frequency range is also increased when compared to the i- and J-series.

High-velocity shock testing

Where a test requires a high shock velocity, traditional shaker systems use a matching transformer to achieve the necessary lower field voltage. Since IMV's ECO-system has complete control over the field level, the field value can be adjusted to increase the maximum shock velocity capability of the system by entering the specified shock profile into IMV's K2 controller. The field level in the shaker is automatically adjusted to ensure that the required velocity is achieved. A-series (EM amplifier model) provides a maximum of 138 inp-p shock velocity testing.

09

A wider range of test requirements and higher test specifications. A-series meets the needs for such a versatile test environment.

Standard 3.0 inp-p displacement *Only for A30, A45, A65, A74

A-series has a displacement of 3.0 inp-p (3-inch stroke), which provides a good balance within the specifications for velocity, acceleration and displacement. This single system can be used for a very wide variety of tests.

Introduction of new power module

By developing a power amplifier that uses a new next-generation Silicon Carbide power module, IMV has achieved low noise and high efficiency. This new power module is standard-issue for all A-series models.

	3,600
ak)	87
))	2.4
	Not achievable (not enough velocity and displacement)

		J230/SA3HAG	J240/SA4HAG			No applicable product		
	-	9,000	12,400	18,000	24,200	-		
ak)	-	94	94	94	94	-		
)	-	4.7	4.7	4.7	4.7	-		
	-	Not achievable (not enough velocity)						

	A11/EM1HAG	A22/EM2HAG	A30/EM3HAG	A45/EM4HAG	A65/EM5HAG	A74/EM10HAG
	4,950 (3,710)	9,890 (8,090)	13,500 (11,250)	20,240 (18,000)	29,240 (27,000)	50,000 (38,200)
ak)	99 (138)	99 (138)	99 (138)	99 (138)	99 (138)	99 (138)
)	2.0 (2.5)	2.0 (2.5)	3.0	3.0	3.0	3.0
	11	31	38	66	106	190

User-friendly and Secure

A-series changes

Advanced automatic energy saving, high level of functionality and a protected test environment. A-series provides a better working environment for vibration testing.

Lower power consumption

In comparison with the same class of conventional systems (i-, J-series), the A-series achieves lower power consumption. With an automatic energy-saving function, increased energy savings are achieved across all force ranges.

Comparison of consumed power per excitation force

International safety standards

A-series complies with international safety standards.

Table Insert Pattern (Unit: inch)

Specifications

			🖉 A11/EM1HAG	🖉 A22/EM2HAG	💋 A30/EM3HAG	🖉 A45/EM4HAG	A65/EM5HAG*6	A74/EM10HAG*6
	Frequency Range (Hz)		0-4,500*4	0-3,300	0-2,600	0-2,600	0-2,600*5	0-2,600*5
		Sine (lbf)	2,470	4,940	6,800	10,120	14,620	16,700
	Rated	Random (lbf rms)*1	2,470	4,940	6,800	10,120	14,620	16,700
	Force	Shock (lbf)	4,945	9,890	13,500	20,240	29,240	50,000
		High Velocity Shock (lbf)	3,710	8,090	11,250	18,000	27,000	38,200
		Sine (g)	102	102	92	92	92	102
	Maximum	Random (grms)	65	65	65	65	65	65
	Acc.	Shock (g peak)	204	204	185	183	184	204
System		High Velocity Shock (g peak)	153	166	154	163	169	204
Specifications		Sine (in/s)	79	79	79	79	79	79
	Maximum	Shock (in/s peak)	99	99	99	99	99	99
	Vel.	High Velocity Shock (in/s peak)	138	138	138	138	138	138
	Maximum	Sine (inp-p)	2.0	2.0	3.0	3.0	3.0	3.0
	Disp.	High Velocity Shock (inp-p)	2.5	2.5	3.0	3.0	3.0	3.0
	Maximu	im Travel (inp-p)	2.5	2.5	3.2	3.2	3.2	3.2
	Maximum Load (lbs)		441	661	882	1,323	2,205	2,205
	Power Requirements (kVA)*2		20.4	30	36	57	83	100
	Breaker Capacity (A)*3		30	50	60	100	150	175
	Model		A11	A22	A30	A45	A65	A74
	Armatu	re Mass (lbs)	24	49	73	110	159	164
	Armature Diameter (gin)		8.3	11	11.4	17.2	17.6	17.6
Vibration Generator	Allowabl	e Eccentric Moment (lbf•in)	2,600	6,200	7,500	13,700	13,700	13,700
Generator	Dimens	sions (in) W × H × D	37 × 33 × 27	41 × 38 × 31	44 × 42 × 33	49 × 48 × 41	52 × 50 × 41	52 × 50 × 41
	Shaker	Body Diameter (φin)	23	27	29	33	37	37
	Mass (bs)	2,381	3,527	4,630	7,055	9,260	9,260
	Model		EM1HAG-A11	EM2HAG-A22	EM3HAG-A30	EM4HAG-A45		EM10HAG-A74
	Maxim	um Output (kVA)	12	24	31	44	68	100
Power Amplifier	Amplifi	er Bay (s)	1	1	1	2	2	3
Ampillier	Dimen	sions (in) W × H × D	23 × 77 × 34	23 × 77 × 34	23 × 77 × 34	46 × 77 × 34	46 × 77 × 34	46 × 77 × 34
	Mass (lbs)	1,036	1,235	1,300	2,205	2,535	4,409
Controller	Vibrati	on Controller		(See Vibration Controller	K2		
	Coolin	g Method			Air cooling			
		Dimensions (in) W × H × D*6	28 × 56 × 31	28 × 61 × 37	28 × 61 × 37	46 × 84 × 32	45 × 94 × 36	58 × 111 × 37
Cooling	Blower	Mass (lbs)	309	463	463	618	503	705
	Blower	Wattage (kw)	3.7	5.5	5.5	11	18.5	30
		Duct Hose Diameter (φ)	4.92	7.87	7.87	9.84	9.84	9.84

*1 Random force ratings are specified in accordance with ISO5344 conditions. Please contact IMV or your local distributor with specific test requirements.
 *2 Power supply: 3-phase 220/480 V, 60 Hz. A transformer is required for other supply voltages.
 *3 Breaker capacity for 480 V
 *4 Above 4,000 Hz, the force rolls-off at a rate of -6 dB/oct.
 *5 Above 2,000 Hz, the force rolls-off at a rate of -12 dB/oct.
 *6 An export license is required for exporting a shaker system of over 11,240 lbf sine force.
 *For random vibration tests, please set the test definition of the peak value of acceleration waveform to operate at less than the maximum acceleration of shock.
 *Frequency range values vary according to sensor and vibration controller.
 *Armature mass and acceleration may change when a chamber is added.
 *Mass and dimensions may change for CE-marked systems.

A65/A74

I-series Standard Range

Universally applicable with over 15 years of sales success.

The i-series is a standard range and easier to maintain than custom products.

[Maximum test range] • Maximum acceleration: 127 g • Maximum velocity: 137 in/s • Maximum displacement: 2.0 inp-p • Maximum loading mass: 440 lbs [Patented upper (armature) support system PS Guide] Parallel Slope Guide is standard [All models can be directly paired with a climatic chamber.]

Table Insert Pattern (Unit: inch)

Specifications

		ystem Model	💋 i220/EM1HAG				i220
	Frequency R	ange (Hz)	0-3,300		Armatur	e Mass (lbs)	14.1
		Sine (lbf)	1.800		Armature Diameter (qin)		7.5
	Rated	Random (lbf rms)*1	1.800	Vibration Generator	Allowab	le Eccentric Moment (Ibf•in)	2,600
	Force	Shock (lbf)	3,600	Generator	Dimens	ons (in) W × H × D	40 × 36 ×2 2
		High Velocity Shock (lbf)*5	2,250		Shaker	Body Diameter (φin)	22
		Sine (g)	127		Mass (It	os)	1,984
		Random (g rms)	89		Model		
	Maximum Acc.	Shock (g peak)	204	Power	Maximu	m Output (kVA)	10
System	, 1001	High Velocity Shock (g peak)*5	159	Amplifier	Amplifie	r Bay (s)	1
Specifications		Sine (in/s)	87	7	Dimensions (in) W × H × D		23 × 69 × 33
	Maximum	Shock (in/s peak)	87		Mass (It	os)	728
	Vel.	High Velocity Shock (in/s peak)*5	137	Controller	Vibration Controller		See Vibration Controller
	Maximum	Sine (inp-p)	2.0		Cooling	Method	Air cooling
	Disp.	High Velocity Shock (inp-p)*5	2.0			Dimensions (in) W × H × D*4	20 × 45 × 25
	Maximum Tra	0 , (11)	2.4	Cooling	Blower	Mass (lbs)	155
	Maximum Loa		440		Blower	Wattage (kw)	1.5
		rements (kVA)*2	16.4			Duct Hose Diameter (φ)	125
	Brekaer Capa	()	30				

10 10

*1 Random force ratings are specified in accordance with ISO5344 conditions. Please contact IMV or your local distributor with specific test requirements *2 Power supply: 3-phase 220/480 V, 60 Hz. A transformer is required for other supply voltages.

*3 Breaker capacity for 480 V.

*4 Specification above applies to 60 Hz. Dimensions change for 50 Hz.

* Specification adverse puries to on the primersions change for 50 file. * For high-velocity option *For random vibration test, please set the test definition of the peak value of acceleration waveform to operate at less than the maximum acceleration of shock.

*Frequency range values vary according to sensor and vibration controller *Armature mass and acceleration may change when a chamber is added. *Mass and dimensions may change for CE-marked systems.

J-series accommodates high-velocity and large-displacement testing

Long-duration shock tests require high velocity and large displacement. J-series is a high-functionality system that offers usability and durability with features that accommodate high-velocity and large-displacement testing.

[Expanded maximum test range] · Maximum velocity of Sine force: 94 in/s • Maximum velocity of Shock force: 137 in/s • Maximum displacement: 4.0 inp-p [Patented upper (armature) support system PS Guide] Parallel Slope Guide is standard [All models can be directly paired with a climatic chamber]

J230 Table Insert Pattern (Unit: inch)

Ec

i220/EM1HAG

(With a slip table)

:0	Sp	ecifi	cati	ons

	Systen		🖉 J230/EM3HAG	💋 J240/EM4HA
	Frequenc	y Range (Hz)	0-3,000	0-2,400
		Sine (lbf)	3,600	5,400
	Rated Random (lbf rms)*1		3,600	5,400
	Force	Shock (lbf)	9,000	12,400
		High Velocity Shock (lbf)*7	6,750	10,800
		Sine (g)	96	94
	Maximum	Random (grms)	67	65
	Acc.	Shock (g peak)	204	204
System		High Velocity Shock (g peak)*7	180	188
Specifications		Sine (in/s)	94	94
	Maximum Vel.	Shock (in/s peak)	94	94
	vei.	High Velocity Shock (in/s peak)*7	137	137
	Maximum	Sine (inp-p)	4.0	4.0
	Disp.	High Velocity Shock (inp-p)*7	4.0	4.0
	Maximum	Travel (inp-p)	4.7	4.7
	Maximum	Load (lbs)	660	880
	Power Re	quirements (kVA)*2	28	38
	Breaker C	apacity (A)*3	50	75
	Armature	Mass (lbs)	37.5	57.3
101	Armature	Diameter (qin)	7.9	11.4
Vibration Generator	Allowable I	Eccentric Moment (lbf+in)	6,200	7,530
Generator	Dimensio	ns (in) W × H × D	45 × 43 × 34	49 × 45 × 35
	Shaker Bo	ody Diameter (øin)	25	29
	Mass (lbs)	3,970	5,295
			EM3HAG-J30	EM4HAG-J40
D	Maximum	Output (kVA)	23	34
Power Amplifier	Amplifier	Bay (s)	1	1
Ampliner	Dimensio	ns (in) W × H × D	23 × 69 × 34	23 × 69 × 34
	Mass (Ibs	5)	840	1,080
Controller	Vibration	Controller		
	Cooling N	/lethod		
		Dimensions (in) W × H × D*5	28 × 56 × 31	28 × 61 × 37
Cooling	Blower	Mass (lbs)	309	474
	Siowor	Wattage (kw)	3.7	5.5
		Duct Hose Diameter (φ)	7.87	7.87
1 Random forc	e ratings a	re specified in accordance with I	SO5344 conditions. Please co	ntact IMV or your local di

Nandom force ratings are specified in accordance with ISU5344 conditions. Please contact II 2 Power supply: 3-phase 220/480 V, 60 Hz. A transformer is required for other supply voltages.
 3 Breaker capacity for 480 V
 4 Above 2,000Hz, the force rolls-of f at a rate of -12 dB/oct.
 5 Specification above applies to 60 Hz. Dimensions change for 50 Hz.

6 An export license is required for exporting a shaker system of over 11.240 lbf sine force.

7 For high-velocity option For random vibration tests, please set the test definition of the peak value of acceleration waveform to operate at less than the maximum acceleration of shock

For landom violation tests, prease set the test definition of the peak value Frequency range values vary according to sensor and vibration controlle "Armature mass and acceleration may change when a chamber is added. "Mass and dimensions may change for CE-marked systems.

13

51 × 84 × 33 51 × 84 × 33 52 × 89 × 43 52 × 89 × 43 644 9.84 9.84 9.84

listributor with specific test requ

K-series High-Excitation-Force Water-Cooled Range

IMV-Smart[™] **ECO-Shaker**

High-excitation-force and silent water-cooled system for improving your test environment

K-series, the high-excitation-force water-cooled vibration-simulating test systems fully developed by IMV. Advanced performance from the K-series will significantly improve your test environment.

[Silent system design] The water-cooling system produces neither the intake nor exhaust sounds that an air-cooling system does. [Record of significant accomplishments] IMV has developed the most advanced water-cooled system.

Table Insert Pattern (Unit: inch)

Diameter **ф17.6** 5-φ0.6 Depth 0.8 1/2-13 UNC Depth 1.2 -φ0.6 Depth 0.7 1/2-13 UNC Depth 1.0 (P.C.D. 4, 8, 12, 16) (P.C.D. 8,16, 20) (P.C.D. 8, 16, 20) K125/K125LS K200 K080

	Systen	n Model	💋 K080/EM10HAG*6	💋 K125A/EM18HAG*6	💋 K125LS/EM20HAG*6	💋 K200/EM24HAG*6	💋 K350/EM36HAG*6
	Freque	ncy Range (Hz)	0-2,500	0-2,500	0-2,000	0-2,000	0-2,000
		Sine (lbf)	18,000	28,100	28,100	45,000	78,700
	Rated Random (lbf rms)*1		18,000	28,100	28,100	45,000	70,800
	Force	Shock (lbf)	36,000	56,200	56,200	90,000	157,300
		High Velocity Shock (lbf)	24,730	37,100	37,100	58450	-
		Sine (g)	102	102	102	102	102
	Maximum	Random (grms)	71	71	71	71	71
<u> </u>	Acc.	Shock (gpeak)	204	204	204	204	204
System Specifications		High Velocity Shock (g peak)	187	204	168	133	-
opconcatoris		Sine (in/s)*3	79	79	79	79	79
	Maximum Vel.	Shock (in/s peak)	79	79	79	94	138
		High Velocity Shock (in/s peak)	138	138	138	138	-
	Maximum Disp.	Sine (inp-p)	2.0	2.0	4.0	3.0	3.4
		im Travel (inp-p)	2.3	2.4	4.56	3.4	3.7
	Maximu	ım Load (Ibs)	2,200	4,400	4,400	4,400	6,615
	Power Requirements (kVA)*2		100	170	190	300	325
	Breaker Capacity (A)*4		150	250	300	500	630(total)
	Model		K080	K125A	K125LS	K200	K350
	Armature Mass (lbs)		132	177	221	441	772
	Armatu	re Diameter (φin)	17.6	22	22	25.6	29.9
	Allowable	e Eccentric Moment (lbf•in)	13,700	21,700	21,700	43,400	43,400
Vibration Generator	Dimens	sions (in) W × H × D	63 × 48 × 41	70 × 54 × 51	78 × 61 × 54	97 × 75 × 69	119 × 91 × 82
Generator	Shaker	Body Diameter (φin)	39	43	43	50	64
	Mass (I	bs)	11,025	15,435	17,640	41,890	88,185
	Model		EM10HAG-K80	EM18HAG-K125A	EM20HAG-K125LS	EM24HAG-K200	EM36HAG-K350
	Maxim	um Output (kVA)	100	124	155	320	400
Power	Amplifi	er Bay (s)	2	3	3	5	7
Amplifier	Dimen	sions (in) W × H × D	46 × 77 × 34	69 × 77 × 34	69 × 77 × 34	114 × 77 × 34	161 × 77 × 34
7 anipinioi	Mass (lbs)	3,310	5,730	7,275	11,020	12,015
Controller				See	Vibration Controller K2		
00110101101	Cooling	g Method		Shaker: Wa	ater Cooling/Amp: Air Cooling		
		Cooling Water $\Delta t = 5^{\circ}C$	103	103*5	103*5	172*5	182*5
Cooling	Cooling Fle	ow Rate (gal/min) ∆t = 10°C	25	39*5	39*5	60*5	66*5
	Heat	Dimensions (in) W × H × D*6	23 × 67 × 34	23 × 67 × 34	23 × 67 × 34	41 × 75 × 32	47 × 77 × 55
		Mass (lbs)	885	885	885	1,325	1,325

*1) Random force ratings are specified in accordance with ISO5344 conditions. Please contact IMV or your local distributor with specific test requirements.
*2) Power supply: 3-phase 220/480 V, 60 Hz. A transformer is required for other supply voltages.
*3) If the tests (Sweep or Spot) include high velocity, the maximum velocity value should be reduced to 5.5 in/s.
*4) Breaker capacity for 480 V
*5) Purpose visual to the test of test of the test of the test of test of the test of test

5) Bypass circuit is needed. Please contact IMV or your local distributor for further information

(F) An export license is reduced. Finder control for the system of over 11,240 lbf sine force.
For random vibration tests, please set the test definition of the peak value of acceleration waveform to operate at less than the maximum acceleration of shock
Frequency range values vary according to sensor and vibration controller.

* Armature mass and acceleration may change when a chamber is added.
* Mass and dimensions may change for CE-marked systems.

[Single-axis systems] Vibration Test Systems

15

M-series Low Acoustic Noise and Compact Range

Silent model suitable for abnormal noise inspection

Compact and silent design, but also powerful enough for full-scale tests.

[Silent design employing a built-in cooling fan] DC-powered cooling fan is built into the shaker. Natural air-cooling is also used when the cooling fan is stopped for silent operation (with a reduction in performance).

Specifications

	vstem Model		m030/MA1-CE	m060/MA1-CE	m120/MA1-CE	m030H/MA1	m130LS/MA1-CE	
	Frequen	cy Range (Hz)	0-3,000	0-3,000	0-2,000	1,000-10,000	2-1,000	
		Sine (lbf)	67	135	270	85	292	
	Rated force	Random (lbf rms)	47	94	189	60	146	
		Shock (lbf)	67	135	270	85	292	
		No Load (g)	51	51	51	20	13	
System Specifications	Maximum Acc.	0.5kg Load (g)	28	35	42	16	12	
-,		1.0kg Load (g)	19	27	36	13	11	
	Maximun	velocity (in/s)	63	63	63	— *1	1.0	
	Maximum Displacement (in-p)		1.0	1.2	1.2	*1	2.0	
	Maximun	n Load (Ibs)	33	33	265	33	220	
	Power Requirements (kVA)*2		0.4	0.7	1.1	0.5	1.1	
	Model		m030-CE	m060-CE	m120-CE		m130LS-CE	
	Armature Support Method		Diaphragm spring	Diaphragm spring	Air Suspension	Rubber spring	Air Suspension	
Vibration	Armature Mass (lbs)		1.3	2.7	5.3	4.2	22	
Generator	Armature	e Diameter (φin)	4.5	4.5	6.9	2.6	7.1	
	Dimensi	ons (in)	φ7.5 × H10	φ9 × H11	φ12.6 × H12.9* ³	φ7.5 × H11	W16.1 × H23.3 × D18	
	Mass (lb	s)	49	90	245	66	550	
	Model		MA1-CE	MA1-CE	MA1-CE	MA1-CE	MA1-CE	
	Maximun	n Output (kVA)	1.0	1.0	1.0	1.0	1.0	
Power Amplifier	Dimensions (in) W × H × D		17 × 6 × 17	17 × 6 × 17	17 × 6 × 17	17 × 6 × 17	17 × 6 × 17	
	Mass (lbs)		55	55	55	55	55	
	Cooling	Vethod			Air cooling			
Cooling	Blower		Housed in vibration generator					

*1) The displacement at the lower limit of frequency (1,000 Hz) and maximum acceleration (20 g) is so small that there is no certified value.

*2) Power supply:single-phase AC100 V/200 V or AC110 V/220 V or AC120 V/240 V ±10% 50/60 Hz. A transformer is required for other supply voltages *3) Insulation pad (W16.1 x H1.8 x D16.2 in) is standard equipment.

* The specifications show the maximum system performance. For long-duration tests, de-rating by up to 70% must be applied. Continuous use at maximum levels may cause failure. Please contact IMV if you use more than 70%. * Frequency range values vary according to sensor and vibration controlle

Table Insert Pattern (Unit: mm)

Diameter dd14 9-M6 Depth 10 9-M6 Depth 10 (P.C.D.100) (PCD 100) m030 m060

Accessories

A pair of carrying handles

Safely and easily carried by one or two operators. *Removable for m030 and m060 only

Option

Head expander

Model	Dimensions (in)	Mass(lbs)	Maximum frequency (Hz)	m030-CE	m060-
TBV-125- 🗌 - A	4.9 × 4.9 × t0.8	2.0	2,000	0	0
TBV-200- 🗌 - A	7.9 × 7.9 × t0.8	5.5	1,500	0*	0
TBV-315- 🗌 - A	12.4 × 12.4 × t1.2	18.7	1,000		0
*TBV-400- 🗌 - A	15.7 × 15.7 × t1.4	31.7	600		

"-A" at the end of model number shows that material is aluminum alloy.

Add the vibration generator type where "
]" is shown.

* A supplementary guidance system using linear bearings is used with the vibration generator when combined with the head expander. Armature mass is increased due to the addition of the guide support.

Slip table

	Dimensions	Maximum frequency								
Model			m030-CE	m060-CE		m130LS-CE				
TBH-200	7.9 × 7.9	500	8.8	8.8	12.1	-				
TBH-315	12.4 × 12.4	500	16.5	16.5	19.8	-				
TBH-400	15.7 × 15.7	500	-	27.1	30.1	-				
TBH-500	19.6 × 19.6	500	-	-	-	61.1				
* Slip plate	motorial is alumin									

Slip plate material is aluminum alloy

Example of excitation of any selected point

17

Diameter d114

Air pump

The vibration table height is adjusted to compensate for payload weight using an air pump.

Head expander

Supplementary guidance system (GDP)

Emergency stop switch

It is possible to stop the system in an emergency.

Moving device

Eliminates the hassle of moving the machine and enables tests to be performed in any available space.

Head-expanders (flat-surface model)

Optional Units

Head expanders and cubic fixtures

Head-expanders

Where the size of the specimen exceeds the dimensions of the armature a head-expander should be used. Generally, the maximum usable frequency is reduced as the size of the specimen increases. The head-expander should be selected based on specimen size and maximum test frequency required. Properties of the standard range of head-expanders is shown in the table.

Model	Dimensions	Mass	Maximum frequency				A-s	eries					i-serie	es
wodei			(Hz)									i21		i220
TBV-125- 🗌 - A	4.9 × 4.9	1.9	0.000	—		-	—	_		-	—	C)	_
TBV-125- 🗌 - M	t 0.8	1.3	2,000			-	_	_		-	_	C)	_
TBV-315- 🗌 - A	12.4 × 12.4	18.7	4.000	0		0	0	-		-	—	C)	0
TBV-315- 🗌 - M	t 1.2	12.8	1,000	0		0	0	—		_	_	C)	0
TBV-400- 🗌 - A	15.7 × 15.7	28.6	600	0		0	0	-		-	_	C)	0
TBV-400- 🗌 - M	t 1.2	19.8	600	0		0	0	-		_	—	C)	0
TBV-500- 🗌 - A	19.6 × 19.6	33	500	0		0	0	0		0	0	C		0
TBV-500- 🗌 - M	t 1.6	22.9	500	0		0	0	0		0	0	C)	0
TBV-630- 🗌 - A	24.8 × 24.8	41.9	360	0		0	0	0		0	0	C)	0
TBV-630- 🗌 - M	t 1.8	27.5	500	0		0	0	0		0	0	C)	0
TBV-800- 🗌 - A	31.5 × 31.5	99.2	350	0		0	0	0		0	0	-	-	0
TBV-800- 🗌 - M	t 2.8	66.1	550	0		0	0	0		0	0	-	-	0
TBV-1000-🗌 -A	39.3 × 39.3	242.5	350	0		0	0	0		0	0		-	_
TBV-1000-🗌 -M	t 4.3	171.9		0		0	0	0		0	0		-	_
TBV-1200-🗌 -A	47.2 × 47.2 t 4.9	396.8	200	-		0	0	0		0	0		-	—
TBV-1500-	59 × 59 t 7.9	661.3	200	_		_	_	0		0	0		-	_
15V-1500A	00 - 00 11.0	001.0	200							-				
Model	Dimensions	Mass	Maximum frequency		J-se	eries		-		K-sei	ries			
Model	Dimensions (in)	Mass (lbs)		J230	J-se J240	eries J250	J260	K030	K060	K-sei K080	ries K125	K125LS	K200	K350
Model TBV-125-□-A	Dimensions (in) 4.9 × 4.9	Mass (lbs) 1.9	Maximum frequency	J230	J-se J240	eries J250 —	J260	K030 —	-	K-sei K080	ries K125 —	_	-	-
Model TBV-125 A TBV-125 M	Dimensions (in)	Mass (lbs) 1.9 1.3	Maximum frequency (Hz)	J230 — —	J-se J240 —	J250 -	J260 — —	K030 — —	-	K-sei K080	ries K125		-	
Model TBV-125 A TBV-125 M TBV-315 A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4	Mass (lbs) 1.9 1.3 18.7	Maximum frequency (Hz)	J230 — — — O	J-se J240 — — —	J250	J260 — — —	K030 — — —	-	K-sei K080 — —	ries K125 — — —	_	-	-
Model TBV-125 A TBV-125 M TBV-315 A TBV-315 M	Dimensions (in) 4.9 × 4.9 t 0.8	Mass (lbs) 1.9 1.3 18.7 12.8	Maximum frequency (Hz) 2,000	J230 — — — — — — —	J-se J240 — — — — —	J250 — — — —	J260 — — — —	K030 — — — —	_ _ _ _	K-sei K080 — — — —	ries K125 — — — —			
Model TBV-125 A TBV-125 M TBV-315 A TBV-315 M TBV-400 A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7	Mass (lbs) 1.9 1.3 18.7 12.8 28.6	Maximum frequency (Hz) 2,000	J230 — — — — — — — — — — — — — — — — — — —	J-se J240 — — — — — — — — — — — — — — — — — — —		J260 — — — —	K030 — — — — — — — — —	- - - -	K-sei K080 — — — —	ries K125 — — — —			
Model TBV-125A TBV-125M TBV-315A TBV-315M TBV-400A TBV-400M	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8	Maximum frequency (Hz) 2,000 1,000	J230 — — — — — — — — — — — — — — — — — — —	J-se J240 — — — — — — — — — — — — — — — — — — —		J260 — — — — — — — — —	K030 — — — — — — — — — — — — — — — — — —		K-sei K080 — — — — — — —	ries K125 — — — — — — — — —			
Model TBV-125A TBV-125M TBV-315A TBV-315M TBV-400A TBV-400M TBV-400A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33	Maximum frequency (Hz) 2,000 1,000	J230 — — — — — — — — — — — — — — — — — — —	J-se J240 — — — — — — — — — — — — — — — — — — —	eries J250 — — — — — — — — — — — — — — — — — — —	J260 — — — — — — — — — — — — — — — — — — —	K030 — — — — — — — — — — — — — — — — — —	 0	K-sei K080 — — — — — — — — — — — — — — — — — —	ries K125 — — — — — — — — — —	 		
Model TBV-125A TBV-125M TBV-315A TBV-315M TBV-400A TBV-400M TBV-500A TBV-500M	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6 t 1.6	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33 22.9	Maximum frequency (Hz) 2,000 1,000 600	J230 	J-se J240 — — — — — — — — — — — — — — — — — — —		J260 	K030 0 0 0 0	- - - - - 0	K-set K080 0 0	ties K125 			
Model TBV-125A TBV-125M TBV-315A TBV-315M TBV-400A TBV-400M TBV-500A TBV-500M TBV-500A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6 t 1.6 24.8 × 24.8	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33 22.9 41.9	Maximum frequency (Hz) 2,000 1,000 600	J230 	J-se J240 — — — — — — — — — — — — — — — — — — —		J260 — — — — — — — — — — — — — — — — — — —	K030 	 0 0 0	K-set K080 0 0 0	ries K125 0	- - - - - - - - - - - - 0		
Model TBV-125- -A TBV-125- -M TBV-315- -A TBV-315- -M TBV-400- -A TBV-500- -A TBV-500- -A TBV-500- -A TBV-630- -A TBV-630- -A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6 t 1.6 24.8 × 24.8 t 1.8	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33 22.9 41.9 27.5	Maximum frequency (Hz) 2,000 1,000 600 500	J230 0 0 0 0 0 0 0 0 0 0 0 0 0	J-se J240 — — — — — — — — — — — — — — — — — — —	-ries J250 0 0 0 0 0 0	J260 — — — — — — — — — — — — — — — — — — —	K030 	- - - - 0 0 0 0	K-ser K080 0 0 0 0 0	ries K125 0 0	 0 0		
Model TBV-125- -A TBV-125- -M TBV-315- -A TBV-315- -M TBV-400- -A TBV-500- -A TBV-500- -A TBV-630- -A TBV-630- -A TBV-630- -A TBV-800- -A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6 t 1.6 24.8 × 24.8 t 1.8 31.5 × 31.5	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33 22.9 41.9 27.5 99.2	Maximum frequency (Hz) 2,000 1,000 600 500	J230 — — 0 0 0 0 0 0 0 0 0 0 0 0 0	J-se J240 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rries J250 	J260 — — — — — — — — — — — — — — — — — — —	K030 	- - - - - 0 0 0 0 0	K-ser K080 0 0 0 0 0 0	ries K125 0 0 0 0	 0 0 0		
Model TBV-125- -A TBV-125- -M TBV-315- -A TBV-315- -M TBV-400- -A TBV-500- -A TBV-500- -A TBV-630- -A TBV-630- -A TBV-800- -A TBV-800- -A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6 t 1.6 24.8 × 24.8 t 1.8 31.5 × 31.5 t 2.8	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33 22.9 41.9 27.5 99.2 66.1	Maximum frequency 2,000 1,000 600 500 360	J230 — — 0 0 0 0 0 0 0 0 0 0 0 0 0	J-se J240 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rries J250 0 0 0 0 0 0 0 0 0 0 0 0 0	J260 — — — — — — — — — — — — — — — — — — —	K030 	- - - - - - - 0 0 0 0 0 0 0	K-ser K080 0 0 0 0 0 0 0 0 0 0	ries K125 0 0 0 0 0 0			
Model TBV-125A TBV-125M TBV-315A TBV-315M TBV-400A TBV-500A TBV-500A TBV-630A TBV-630A TBV-800A TBV-800A TBV-800A TBV-800A TBV-800A TBV-800A TBV-800A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6 t 1.6 24.8 × 24.8 t 1.8 31.5 × 31.5 t 2.8 39.3 × 39.3	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33 22.9 41.9 27.5 99.2 66.1 242.5	Maximum frequency 2,000 1,000 600 500 360	J230 — — 0 0 0 0 0 0 0 0 0 0 0 0 0	J-se J240 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eries J250 - - - - - - - - - - - - -	J260 	K030 	- - - - 0 0 0 0 0 0 0 0 0 0	K-ser K080 0 0 0 0 0 0 0 0 0 0 0 0	ries K125 0 0 0 0 0 0 0 0 0 0 0 0 0			
Model TBV-125- -A TBV-125- -M TBV-315- -A TBV-315- -M TBV-400- -A TBV-500- -A TBV-500- -A TBV-630- -A TBV-630- -A TBV-800- -A TBV-800- -A TBV-800- -A TBV-800- -A TBV-1000- -A TBV-1000- -A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6 t 1.6 24.8 × 24.8 t 1.8 31.5 × 31.5 t 2.8 39.3 × 39.3 t 4.3	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33 22.9 41.9 27.5 99.2 66.1 242.5 171.9	Maximum frequency 2,000 1,000 600 500 360 350 350	J230 	J-se J240 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eries J250 - - - - - - - - - - - - -	J260 	K030 	- - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0	K-ser K080 0 0 0 0 0 0 0 0 0 0 0	ries K125 0 0 0 0 0 0 0 0 0 0 0 0 0			
Model TBV-125A TBV-125M TBV-315A TBV-315M TBV-400A TBV-500A TBV-500A TBV-630A TBV-630A TBV-800A TBV-800A TBV-800A TBV-800A TBV-800A TBV-800A TBV-800A	Dimensions (in) 4.9 × 4.9 t 0.8 12.4 × 12.4 t 1.2 15.7 × 15.7 t 1.2 19.6 × 19.6 t 1.6 24.8 × 24.8 t 1.8 31.5 × 31.5 t 2.8 39.3 × 39.3	Mass (lbs) 1.9 1.3 18.7 12.8 28.6 19.8 33 22.9 41.9 27.5 99.2 66.1 242.5 171.9 396.8	Maximum frequency 2,000 1,000 600 500 360 350	J230 — — 0 0 0 0 0 0 0 0 0 0 0 0 0	J-se J240 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eries J250 - - - - - - - - - - - - -	J260 	K030 	- - - - 0 0 0 0 0 0 0 0 0 0	K-ser K080 0 0 0 0 0 0 0 0 0 0 0 0	ries K125 0 0 0 0 0 0 0 0 0 0 0 0 0			

Model names ending with "A" indicate aluminum body and "M" indicate magnesium alloy. Add the vibration generator type where "-" is shown. *The data shown refers to the IMV standard range. Custom designs can also be supplied.

Options for use with vertical tables

Guide system, additional air spring

The following option increases the allowable overturning moment of the head expander.

 Additional guide system Enabling larger or off-center specimens to be tested.

 Additional air spring Providing additional load support to accommodate higher specimen and fixture mass.

*Some models do not support the options above

Vibration

Guide system

Vibration generator

Cubic fixture

Type A

The specimen can be fastened to the top or the side face of the cubic fixture where testing in each axis is required. Two types of cubic fixture are available. Type A has fixing holes on each face, Type B has specimen mounting plates which attach to the cubic frame.

Type B

	Cubic fixtu	re (Type A)		
Model	Dimensions (in)	Mass (lbs)	Maximum frequency (Hz)	Ν
TCJ-A150- 🗌 - A	5.9 × 5.9 × 5.9	12.1	2,000	TCJ-E
TCJ-A150- 🗌 - M	5.9 ~ 5.9 ~ 5.9	8.8	2,000	TCJ-E
TCJ-A160- 🗌 - A	6.2 × 6.2 × 6.2	14.3	2,000	TCJ-E
TCJ-A160- 🗌 - M	0.2 ^ 0.2 ^ 0.2	4.6	2,000	TCJ-E
TCJ-A200- 🗌 - A	7.8 × 7.8 × 7.8	10.1	1,000	TCJ-E
TCJ-A200- 🗌 - M	1.0 ~ 1.0 ~ 1.0	12.3	1,000	TCJ-E
TCJ-A250- 🗌 - A	9.8 × 9.8 × 9.8	29.7	650	TCJ-E
TCJ-A250- 🗌 - M	9.0 ~ 9.0 ~ 9.0	20.9	0.50	TCJ-E
TCJ-A300- 🗌 - A	11.8 × 11.8 × 11.8	44	400	TCJ-E
TCJ-A300- 🗌 - M	11.0 ^ 11.0 * 11.0	30.8	400	TCJ-E

Model names ending with "A" indicate aluminum body and "M" indicate magnesium alloy. Add the vibration generator type where "

Model	Dimensions (in)	Mass (lbs)	Maximum frequency (Hz)	Specimen mounting screw	Screw pitch
TBV-350 A-L	13.7 × 13.7 × t 33	13.2	750	M10 Depth25	3.9 in Pitch
TBV-350 A-H	13.7 × 13.7 × t 65	24.2	1,500	M10 Depth25	3.9 in Pitch
TBV-550- 🗌 - A-L	21.6 × 21.6 × t 30	37.4	300	M10 Depth25	3.9 in Pitch
TBV-550- 🗌 - A-H	21.6 × 21.6 × t 60	66.1	600	M10 Depth25	3.9 in Pitch
TBV-750 A-L	29.5 × 29.5 × t 38	66.1	200	M10 Depth25	3.9 in Pitch
TBV-750- 🗌 - A-H	29.5 × 29.5 × t 75	121.2	400	M10 Depth25	3.9 in Pitch
TBV-950- 🗌 - A-L	37.4 × 37.4 × t 45	99.2	150	M10 Depth25	3.9 in Pitch
TBV-950- 🗌 - A- H	37.4 × 37.4 × t 90	176.3	300	M10 Depth25	3.9 in Pitch
TBV-1150- 🗌 - A-L	45.2 × 45.2 × t 60	198.4	120	M10 Depth25	7.8 in Pitch
TBV-1150- 🗌 - A-H	45.2 × 45.2 × t 120	352.7	240	M10 Depth25	7.8 in Pitch

Model names ending with "A" indicate aluminum body. Add the vibration generator type where "
] " is shown. Please contact us for more information.

High-frequency model

A head-expander with exceptionally low mass and special dual conical shape, providing excellent damping.

Specimen-mounting plates

Specimen mounting plates

B150- -A TCJ-B150-P-A 7.7 3.3 5.9 × 5.9 × 5.9 2,000 B150-🗌-M 5.5 TCJ-B150-P-M 2.4 B160- 🗌 - A 8.8 TCJ-B160-P-A 3.7 6.2 × 6.2 × 6.2 2,000 B160- 🗌 - M 6.1 TCJ-B160-P-M 2.8 B200- 🗌 - A 22 TCJ-B200-P-A 7.7 .8 × 7.8 × 7.8 2,000 B200- 🗌 - M TCJ-B200-P-M 15.4 5.5 B250- 🗌 - A 44 TCJ-B250-P-A 9.9 9.8 × 9.8 × 9.8 1,000 B250- 🗌 - M 30.8 CJ-B250-P-M 7 B300- 🗌 - A TCJ-B300-P-A 14.3 44 11.8 × 11.8 × 11.8 600 B300- 🗌 - M 30.8 TCJ-B300-P-M 9.9

Optional Units

Slip table

Slip table

A slip table is required for testing a specimen along its horizontal axis, or when a heavy specimen is to be tested. Slip tables are designed to achieve low friction in the driven axis, while supporting heavy loads and introducing minimal waveform distortion.

Type and features of slip table

MS: Simultaneous use of Mechanical Bearing and Oil Film

Employs a combined structure of a high rigid linear bearing and an oil film method, the purpose of which is to improve vibration damping.

Model	T	BH-550-□-A-N	ИS	TE	BH-750-□-A-N	٨S	TE	3H-950-□-A-N	1S	TI	BH-1150-□-A-	MS	
Table Size (in)					29.5 × 29.5								
Moment(Ibf•in)		9,735			19,471			19,471			40,713		
Maximum Load (Ibs)		1,543			2,204			3,307			4,409		
Vibration Generator	Moving Mass [*] (Ibs)	Frequency (Hz)	Thickness (in)										
A11	121	2.000	1.5	205	2.000	4 5	304	1.050	4.5	-	-	-	
A22	128	128 2,000 1.5			209 2,000 1.5			309 1,250 1.5			441 800 1.5		

Model	TB	H-550-□-A-N	IS	TE	3H-750-□-A-N	/IS	TE	3H-950-□-A-N	1S	TI	BH-1150-□-A-I	MS
Table Size(in)		21.6 × 21.6			29.5 × 29.5							
Moment(lbf•in)		9,735			19,471			19,471			40,713	
Maximum Load (lbs)		1,543			2,204			3,307			4,409	
Vibration Generator	Moving Mass [*] (Ibs)	Frequency (Hz)	Thickness (in)									
A30	132						320			458		
A45	150	2,000 1.5			238 2,000 1.5			337 1,250 1.5			800	1.5
A65	100	130		230			557			470		

*The weight applies to a plate made of aluminum.

* is the model number of the vibration generator.

MB: Mechanical Bearing

The mechanical bearing employs a linear motion guide which utilizes a component with a linear rolling motion. It significantly contributes to the high performance of tables which have high rigidity and high load and have long stroke motion. Another strong feature of the mechanical bearing is its easy operability, since it is lightweight and has no need for a hydraulic unit.

	TB	H-550-□-A-M					
Moment(lbf•in)		82,311					
Maximum Load (lbs)	2,204						
Vibration Generator	Moving Mass [*] (Ibs)	Frequency (Hz)	Thickness (in)				
A11	101	2,000	12				
A22	104	2,000	1.2				

Model	TB	H-550-□-A-M	В	TE	BH-750-□-A-N	ЛB	TE	3H-950-□-A-N	1B	TI	BH-1150-□-A-I	ИВ
Table Size (in)					29.5 × 29.5							
Moment(lbf•in)		82,311			112,404			174,359			455,813	
Maximum Load (lbs)		2,204			4,409			4,409			4,409	
Vibration Generator	Moving Mass [*] (Ibs)	Frequency (Hz)	Thickness (in)									
A30	104	0.000		165	0.000		233	0.000		332	0.000	
A45	110	2,000 1.2		191 2,000 1.2		251	2,000 1.2		352	2,000	1.5	
A65	115	2,000*1			2,000*1			2,000*1			2,000*1	

*¹ Above 1,600 Hz, the force rolls-off at a rate of -6db/oct. *The weight applies to a plate made of aluminum. * is the model number of the vibration generator. *Please contact us about table sizes over 45.2 × 51.

ST: Oil Film Type

This version is supported by an oil film. It creates a constant oil film at the opposite side of the table, letting the table slide with low friction. The oil pump unit is located in the slip table base. Since the amount of moving mass is small, it has become one of the most well-known slip tables in the industry and has a substantial sales record.

Model	TI	BH-500-□-A-\$	ST	TI	3H-630-□-A-\$	ST	TI	BH-800-□-A-\$	ST	TB	H-1000-□-A-	ST	
Table Size(in)		19.6 × 19.6			24.8 × 24.8						39.3 × 39.3		
Moment(Ibf•in)		1,770			3,540			7,080		11,505			
Maximum Load (lbs)		441			661			882		1,102			
Vibration Generator	Moving Mass [*] (Ibs)	Frequency (Hz)	Thickness (in)										
i210		2 500					_	_	_	-	—	—	
i220	73	2,500	1.2	99	99		143		1.2	220		1.2	
K030		2,000			2,000		143	2.000	1.2	220	1.250	1.2	
K060	132	2,000	1.9	176 1.0		1.0	254	2,000	1.0	075	1,250	1.0	
K080	-	-	—	176 1.9		254 1.9			375 1.9				

*The weight applies to a plate made of aluminum.

* is the model number of the vibration generator.

TT-L: Hydrostatic Bearing (Low Pressure)/TT-H: Hydrostatic Bearing (High Pressure)

Features multiple hydrostatic bearings on a high, rigid base to support the slip table. The hydrostatic bearings are uniquely designed to support a high load and high eccentric moment. Bearings are built in heat-insulated oil tanks and a whole table unit fits inside a chamber. Therefore there is no need to attach a thermal barrier. Moreover, the structure does not require elastic rubber to connect the table plate and chamber bottom.

TT-L: Hydrostatic Bearing (Low Pressure)

Model	TBH	1-500-A	\-TT	TBH	H-630-A	\-TT	TBH	l-800-A	-TT	TBH	-1000-	A-TT	TBH	-1200-/	A-TT	TBH	-1500-/	λ-TT	TBH	-1800- <i>i</i>	A-TT	TBH	-2000-/	A-TT
Table Size(in)			9.6		4.8 × 24		31	.5 × 31				9.3	47	7.2 × 47										.7
Moment(lbf•in)		9,735			9,735			19,471			19,471			40,713			57,530			88,507			88,507	
Maximum Load (Ibs)		1,543			2,204			2,204			3,307			4,409			4,409			5,501			5,501	
	Moving Mass [*] (lbs)		Thickness (in)	Moving Mass [*] (lbs)		Thickness (in)	Moving Mass [*] (lbs)		Thickness (in)	Moving Mass [*] (lbs)			Moving Mass'(lbs)			Moving Mass [*] (Ibs)		Thickness (in)	Moving Mass [*] (lbs)			Moving Mass [*] (Ibs)		Thickness (in)
i210	88	0.000		117	0.000		165	4 000		231														
i220	95	2,000	1.2	121	2,000	1.2	172	1,600	1.2	238		1.2												
J230	110		1.2	139		1.2	187		1.2	260	1.000	1.2	617	900	1.9	992	800	1.9	1,433	600	1.9	1.764	500	1.9
J240	110	1.600		139	1.600		107	1.250		200	1,000		017	900	1.9	992	800	1.9	1,433	600	1.9	1,704	500	1.9
J250	154	1,000	1.5	187	1,000	1.5	253	1,250	1.5	342		1.5												
J260	1:04		1.5	10/		1.5	203		1.5	342		1.5												

Model	TBH-	550-□-	A-TTL	TBH-7	750-□-/	4-TTL	TBH-9	950-□-/	A-TTL
Table Size(in)		.6 × 21	1.6						
Moment(lbf•in)		9,735			19,471			19,47	1
Maximum Load (lbs)		2,204			3,306			3,306	
Vibration Generator	Moving Mass'(lbs)	Frequency (Hz)	Thickness (in)	Moving Mass [*] (lbs)			Moving Mass [*] (lbs)		Thickness (in)
A11	114			-					
A22	116			-	-	-	-	-	-
A30	110	2,000	1.2	171			231		
A45				196	1,600	1.2	253	1,000	1.2
A65	141	2,000*		190			200		

*The weight applies to a plate made of aluminum. *Above 1600 Hz, the force rolls-off at a rate of -6db/oct. * 🗆 is the model number of the vibration generator. *Please contact us for more information.

TT-H: Hydrostatic Bearing (High Pressure)

Model	TBH-5		A-TTH	TBH-6		A-TTH	TBH-8		A-TTH			A-TTH	TBH-1	200-🗆-	A-TTH	TBH-1		A-TTH			A-TTH			A-TTH
Table Size(in)			.6		1.8 × 24	1.8	31	.5 × 31				9.3	47	.2 × 47							.8			8.7
Moment(lbf·in)		35,403			35,403			68,151			68,151		-	141,612	2	-	194,716	6	4	124,836	6		424,836	ô
Maximum Load (lbs)		1,764			2,645			3,527			4,409			4,409			4,409			6,614			6,614	
Vibration Generator	Moving Mass [*] (lbs)	Frequency (Hz)	Thickness (in)	Moving Mass [*] (Ibs)		Thickness (in)	Moving Mass [*] (lbs)		Thickness (in)	Moving Mass'(lbs)	Frequency (Hz)		Moving Mass [*] (Ibs)	Frequency (Hz)		Moving Mass [*] (lbs)		Thickness (in)	Moving Mass [*] (Ibs)			Moving Mass [•] (lbs)		Thickness (in)
i210	132	2 000		154	2 000		253	2 000		364	1 250													
i220	139	2,000		183	2,000		260	2,000		370	1,250													
J230	150			194]	275]	386]												
J240	154	1,600		198	1,600		287	1,250		392	1,000													
J250	183	1,600	1.9	220	1,600	1.9	315	1,250	1.9	414	1,000	1.9	617	900	1.9	992	800	1.9	1,433	600	1.9	1,764	500	1.9
J260	105		1.5	220		1.5	315		1.5	414		1.5	017	300	1.5	552	000	1.5	1,400	000	1.5	1,704	500	1.5
K030	150			194			271]	381														
K060	205	2,000		238	2,000		320	2,000		425	1.250													
K080	172	2,000		209	2,000		293	2,000		397	1,250													
K125A	227			260			342			452														
K125LS	249	1.600		282	1.600		375	1.250		485	1.000													

Model	TBH-5	550-□-/	A-TTH	TBH-7		A-TTH	TBH-950-□-A-TTH			
	21.6 ×21.6						37.4 × 37.4			
Moment(lbf•in)	35,403				68,151		68,151			
Maximum Load (lbs)	2,645				4,850			4,850		
Vibration Generator	Moving Mass [•] (lbs)	Frequency (Hz)		Moving Mass'(lbs)			Moving Mass [*] (lbs)	Frequency (Hz)	Thickness (in)	
A11	114			_						
A22	116]		-	-	-	-	-	-	
A30	110	2,000	1.2	171			231			
A45	4.45			196	1,600	1.2	253	1,000	1.2	
A65	145	2,000*		190			233			

*The weight applies to a plate made of aluminum. *Above 1600 Hz, the force rolls-off at a rate of -6db/oct. * 🗆 is the model number of the vibration generator. *Please contact us for more information.

Optional Units

Slip table

TH: Hydrostatic Bearing & Oil Film

(A-series Only)

Slip table for A-series provides the following features with a newly developed hydrostatic and hydraulic bearing and new structure.

Features

- High moment resistance
- Low cross-axis acceleration
- Low distortion
- No requirement for a separate hydraulic unit
- Good work efficacy
- Smaller system installation space

Allowable eccentric moment verification test

Vibration generator

Test weight (3,310 lbs)

Model	TBH-5	50TH	TBH-7	'50TH	TBH-9	950TH	TBH-1	150TH	TBH-1	450TH
Table Size (in)	21.6 >	< 21.6	29.5 ×	< 29.5				< 45.2		· 57
Table Thickness (in)	1.9		1.9		1.9		1.9		1.9	
Pitch Moment (Ibf•in)	53,104		584,149		752,313		752,313		1,752	2,447
Maximum Load (lbs)	3,3	06	19,8	841	19,8	841	19,	841	19,8	341
Vibration Generator	Moving Mass* (lbs)	Frequency (Hz)								
A11										
A22	187	2,000	350		473		656		996	
A30				2.000		1.250		800		500
A45				2,000		1,250		800		500
A65	—	_	396		520		701		1,042	
A74										

*The slip plate material is aluminum alloy. It can be changed to magnesium. Please contact us for more information.

T-Film bearing range

The T-Film bearing from Team Corporation is probably the most advanced design of linear bearing available in the vibration test industry. The slip table employs a number of bearings, each consisting of a U.S.-patented bearing element and hydrostatic oil film. T-Film bearings provide excellent vibration waveform linearity and are considered to be the best solution for the aerospace industry and research establishments.

Watch the

YouTube video

■35600

5**2**0 i

Slip table options

Rotation-reduction gearing

A reduction gearing unit enabling easier reconfiguration of the vibration generator.

*i210 doesn't have this option.

Duct

A newly developed duct is provided as standard. No operation needed for direction change between vertical and horizontal. Space behind the shaker is minimized.

Motor drive rotation

Powered rotation of the vibration generator. Optional motor-driven rotation can be installed on systems equipped with reduction gearing.

Drive bar adapter with diagonal bolt access

The method of fastening a drive bar to a slip table was simplified in response to customer feedback. Usability has been improved and torque adjustment for bolts made easier. *Standard for MB/MS

Optional Units

Fixture, Vibration Isolation, Reinforcement

Fixture

IMV has a range of fixtures, such as cube- and 'L'-shaped types, to suit most applications. Custom fixtures are supplied, designed and analysed using finite-element modeling to ensure best performance.

Vibration Isolation

Additional isolation mounts are available to reduce the effects of vibration on the floor and adjacent equipment.

Insulation pad

These are simple to install by placing under the vibration generator.

Air spring

Air springs placed under each corner of the frame support the vibration generator and are an excellent way to isolate vibration above around 5 Hz.

Optional Units

Soundproof enclosure, cooling ducting, flexible duct

Soundproof enclosure

A soundproof enclosure for the cooling blower reduces noise in installations where the blower cannot be located outside the work area.

Cooling ducting

The standard arrangement for air-cooled systems is to install the blower outside the work area. Ducting the input air from outside eliminates the changes in ambient pressure and temperature caused by the cooling air flow.

Reinforcement

Load-spreader base

The weight of the vibration generator can be distributed over a larger area where the maximum allowable floor loading is limited.

inside

Vibration Test Systems Multi-axis systems

2-Axis Changeover Systems	DC-series	»	P.29
3-Axis Changeover Systems	TC-series	»	P.30
2-Axis Simultaneous Systems	DS-series	»	P.31
3-Axis Simultaneous Systems	TS-series	»	P.32
6 Degrees of Freedom Systems	TTS-series	>>	P.33

Reduced test time

Testing in three axes simultaneously instead of sequentially can reduce overall test time by eliminating the time taken to reconfigure the system and to run tests in each axis.

Test time reduced to one-third or less

Reproduction of failure modes

Three-axis simultaneous vibration testing reproduces real environments more accurately than sequential single-axis tests can.

A single-axis system does not achieve realistic simulation of real-world vibration.

Simultaneous three-axis testing reproduces the stress placed on specimens by complex resonances which may not be detected in single-axis testing.

ICCU (Integrated Cross-Coupling Bearing Unit)

ICCU is a patented technology developed by IMV for three-axis simultaneous excitations.

Preload bolt

Oil film part

27

Highly accurate multi-axis, multi-point control

High-precision multi-axis, multi-point control which can compensate for rotational moments generated by the specimen and fixture and accurately reproduce the vibration measured in the field.

1-2	1	-r	1	an e		ment	me
1		- 1 - C		Sec. Sec. at	0. P		
2	15	~ V	1000	1 dest	and the second	N	my
/	/ A				A.)		
	\leftarrow	42	\leftarrow	1			
<u></u> v	Jan M	1 8	1-5	- Andrew		m	and the
	-	/			1992		
any.	Jone N	- nor	and a	/	James	100000	
	the Provide		77-L Y			COLUMN IN CASE	J
James N	my		and s	1	1	10000	1000
			- M - L - P	Contraction of the local division of the loc			
1~	source and	James V	الم المعر	James	James	2 ×	1
	/~~II 2		200				
Jan 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N		~~~~~	James	1	/
		/~ ¥			Constant and		

DC-series 2-Axis Changeover Systems

DC-2000-5H

Specifications

	System	Model	DC-1000-4H	DC-1000-6H	DC-1000-8H	DC-1000-10M	DC-2000-5H	DC-2000-8M	DC-2000-10M	DC-2000-15M	DC-3000-5H	DC-3000-8M
		Size (in)	15.7	23.6	31.5	39.3	19.6	□31.5	39.3	□ 59	□19.6	□31.5
		Sine (lbf)	2.200	2.200	2.200	2.200	4.400	4,400	4.400	4.400	6.600	6.600
	Rated	Random (lbf)	1.100	1.100	1.100	1.100	2,200	2,200	2,200	2.200	3.300	3,300
	Force	Shock (lbf)	3,300	3,300	3,300	3,300	6,600	6,600	6,600	6.600	9,900	9,900
	Maximu		11.0			3,300				2,9	20.0	
		m Acceleration (g)		7.6	5.5		15.3	8.3	6.8			14.2
System Specifications		m Velocity (in/s)	39.4	39.4	39.4	39.4	39.4	39.4	39.4	35.4	39.4	39.4
Specifications	Internet	n Displacement (inp-p)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
		e Mass (lbs)	200	290	400	660	290	530	640	1,500	330	460
	Maximum	Horizontal (Hz)	1,000	800	700	350	800	500	350	250	800	500
	Frequency	Vertical (Hz)	1,000	1,000	700	500	800	800	500	350	800	800
		m Load (lbs)	220	220	440	440	440	660	1,100	1,100	440	660
	Power F	Requirements (kVA)	25	25	25	25	43	43	43	43	52	52
	Primary	Cooling Water (gal/min)	_	-	-	_	-	-	_	-	-	-
	System	Medel	DC-3000-10M	DC-3000-15M	DC-5000-6H	DC-5000-8H	DC-5000-10M	DC 5000 45M	DC-6000-6H	DC-6000-8H	DC-6000-10M	DC-6000-15M
	Table S	· · ·	39.3	59	23.6	31.5	39.3	59	23.6	31.5	39.3	59
	Rated	Sine (lbf)	6,600	6,600	11,000	11,000	11,000	11,000	13,870	13,870	13,870	13,870
	Force	Random (lbf)	3,300	3,300	6,600	6,600	5,500	5,500	8,300	8,300	6,900	6,900
		Shock (lbf)	9,900	9,900	16,500	16,500	13,200	13,200	20,800	20,800	16,600	16,600
	Maximu	m Acceleration (g)	9.3	4.8	35.7	20.8	16.6	6.0	39.3	27.3	10.4	7.6
System	Maximu	m Velocity (in/s)	39.4	35.4	39.4	39.4	35.4	35.4	39.4	39.4	35.4	35.4
Specifications	Maximun	n Displacement (inp-p)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Inaximun	i Displacement (inp*p)	2.0	2.0	2.0	2.0					2.0	2.0
		e Mass (lbs)	700	1,370	310	530	660	1,810	350	510	1,320	1,810
	Armatur Maximum	e Mass (lbs) Horizontal (Hz)					660 350	1,810 250	350 800		-	-
	Armatur Maximum	e Mass (lbs) Horizontal (Hz)	700	1,370	310	530				510	1,320	1,810
	Armatur Maximum Frequency	e Mass (lbs)	700 350	1,370 250	310 800	530 700	350	250	800	510 700	1,320 350	1,810 250
	Armatur Maximum Frequency Maximu	e Mass (lbs) Horizontal (Hz) Vertical(Hz)	700 350 500	1,370 250 350	310 800 1,000	530 700 800	350 500	250 350	800 1,000	510 700 800	1,320 350 500	1,810 250 350

Depending on the reference PSD or other conditions such as the characteristics of the specimen, one part of the controlled response may deviate from the reference PSD The above is just an example. Specifications may be changed depending on test conditions. Please contact us for more informatior

TC-series 3-Axis Changeover Systems

Specifications

	System	Model	TC-1000-4H	TC-1000-6H	TC-1000-8H	TC-1000-10M	TC-2000-5H	TC-2000-8M	TC-2000-10M	TC-2000-15M	TC-3000-5H	TC-3000-8M
	Table S	ize (in)	15.7	23.6	31.5	39.3	19.6	31.5	39.3	59	19.6	31.5
	Rated	Sine (lbf)	2,200	2,200	2,200	2,200	4,400	4,400	4,400	4,400	6,600	6,600
	Force	Random (lbf)	1,100	1,100	1,100	1,100	2,200	2,200	2,200	2,200	3,300	3,300
		Shock (lbf)	3,300	3,300	3,300	3,300	6,600	6,600	6,600	6,600	9,900	9,900
	Maximur	m Acceleration (g)	10.0	6.6	4.3	3.4	16.6	10.0	6.6	3.1	20.0	11.5
System		m Velocity (in/s)	39.4	39.4	39.4	39.4	39.4	39.4	39.4	35.4	39.4	39.4
Specifications	Maximun	n Displacement (inp-p)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Armatur	e Mass (lbs)	220	330	510	640	270	440	660	1410	330	570
	Maximum	Horizontal (Hz)	1,000	800	700	350	800	500	350	250	800	500
	Frequency	Vertical (Hz)	1,000	1,000	700	500	800	800	500	350	800	800
		m Load (lbs)	220	220	440	440	440	660	1,100	1,100	440	660
	Power F	Requirements (kVA)	27	27	27	27	43	43	43	43	52	52
	Primary 0	Cooling Water (gal/min)	-	-	-	-	-	-	-	-	-	-
	Svstem	Model	TC-3000-10M	TC-3000-15M	TC-5000-6H	TC-5000-8H	TC-5000-10M	TC-5000-15M	TC-6000-6H	TC-6000-8H	TC-6000-10M	TC-6000-15M
	System Table S		TC-3000-10M	TC-3000-15M	TC-5000-6H	TC-5000-8H	TC-5000-10M	TC-5000-15M	TC-6000-6H	TC-6000-8H	TC-6000-10M	TC-6000-15M
-	System Table S		39.3	59	23.6	31.5	39.3	59	23.6	TC-6000-8H	39.3	59
_	Table S Rated	ize (in) Sine (lbf)	39.3 6,600	59 6,600	23.6 11,000	31.5 11,000	39.3 31,000	59 11,000	23.6 13,870	31.5 13,870	39.3 13,870	59 13,870
_	Table S	ize (in)	39.3	59	23.6	31.5	39.3	59	23.6	31.5	39.3	59
	Table S Rated Force	ize (in) Sine (lbf) Random (lbf)	39.3 6,600 3,300	59 6,600 3,300	23.6 11,000 6,600	31.5 11,000 6,600	39.3 11,000 5,500	59 11,000 5,500	23.6 13,870 8,300	31.5 13,870 8,300	39.3 13,870 6,900	59 13,870 6,900
System	Table S Rated Force Maximur	ize (in) Sine (lbf) Random (lbf) Shock (lbf)	39.3 6,600 3,300 9,900	59 6,600 3,300 9,900	23.6 11,000 6,600 16,500	31.5 11,000 6,600 16,500	39.3 11,000 5,500 13,200	59 11,000 5,500 13,200	23.6 13,870 8,300 20,800	31.5 13,870 8,300 20,800	39.3 13,870 6,900 16,600	59 13,870 6,900 16,600
System Specifications	Table S Rated Force Maximur Maximu	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g)	39.3 6,600 3,300 9,900 7.4	59 6,600 3,300 9,900 4.4	23.6 11,000 6,600 16,500 31.2	31.5 11,000 6,600 16,500 22.6	39.3 11,000 5,500 13,200 16.1	59 11,000 5,500 13,200 6.8	23.6 13,870 8,300 20,800 34.9	□31.5 13,870 8,300 20,800 26.2	39.3 13,870 6,900 16,600 20.2	59 13,870 6,900 16,600 8.6
	Table S Rated Force Maximur Maximur	ize (in) Sine (lbf) Random (lbf) Shock (lbf) n Acceleration (g) m Velocity (in/s)	39.3 6,600 3,300 9,900 7.4 39.4	59 6,600 3,300 9,900 4.4 35.4	23.6 11,000 6,600 16,500 31.2 39.4	31.5 11,000 6,600 16,500 22.6 39.4	39.3 11,000 5,500 13,200 16.1 35.4	59 11,000 5,500 13,200 6.8 35.4	23.6 13,870 8,300 20,800 34.9 39.4	31.5 13,870 8,300 20,800 26.2 39.4	39.3 13,870 6,900 16,600 20.2 35.4	59 13,870 6,900 16,600 8.6 35.4
System Specifications	Table S Rated Force Maximur Maximur Armatur	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p)	39.3 6,600 3,300 9,900 7.4 39.4 2.0	59 6,600 3,300 9,900 4.4 35.4 2.0	23.6 11,000 6,600 16,500 31.2 39.4 2.0	31.5 11,000 6,600 16,500 22.6 39.4 2.0	39.3 11,000 5,500 13,200 16.1 35.4 2.0	☐ 59 11,000 5,500 13,200 6.8 35.4 2.0	23.6 13,870 8,300 20,800 34.9 39.4 2.0	31.5 13,870 8,300 20,800 26.2 39.4 2.0	39.3 13,870 6,900 16,600 20.2 35.4 2.0	59 13,870 6,900 16,600 8.6 35.4 2.0
	Table S Rated Force Maximur Maximur Armatur Maximum	ize (in) Sine (lbf) Random (lbf) Shock (lbf) n Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs) Horizontal (Hz)	39.3 6,600 3,300 9,900 7.4 39.4 2.0 880	59 6,600 3,300 9,900 4.4 35.4 2.0 1,500	23.6 11,000 6,600 16,500 31.2 39.4 2.0 350	31.5 11,000 6,600 16,500 22.6 39.4 2.0 485	39.3 11,000 5,500 13,200 16.1 35.4 2.0 680	☐ 59 11,000 5,500 13,200 6.8 35.4 2.0 1,610	23.6 13,870 8,300 20,800 34.9 39.4 2.0 400	31.5 13,870 8,300 20,800 26.2 39.4 2.0 530	39.3 13,870 6,900 16,600 20.2 35.4 2.0 680	59 13,870 6,900 16,600 8.6 35.4 2.0 1,610
	Table S Rated Force Maximur Maximun Armatur Maximum Frequency	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs)	39.3 6,600 3,300 9,900 7.4 39.4 2.0 880 350	59 6,600 3,300 9,900 4.4 35.4 2.0 1,500 250	23.6 11,000 6,600 16,500 31.2 39.4 2.0 350 800	□ 31.5 11,000 6,600 16,500 22.6 39.4 2.0 485 700	39.3 11,000 5,500 13,200 16.1 35.4 2.0 680 350	☐ 59 11,000 5,500 13,200 6.8 35.4 2.0 1,610 250	23.6 13,870 8,300 20,800 34.9 39.4 2.0 400 800	□ 31.5 13,870 8,300 20,800 26.2 39.4 2.0 530 700	39.3 13,870 6,900 16,600 20.2 35.4 2.0 680 350	59 13,870 6,900 16,600 8.6 35.4 2.0 1,610 250
	Table S Rated Force Maximum Maximum Armatur Maximum Frequency Maximu	ize (in) Sine (lbf) Random (lbf) Shock (lbf) n Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs) Horizontal (Hz) Vertical (Hz)	39.3 6,600 3,300 9,900 7.4 39.4 2.0 880 350 500	59 6,600 3,300 9,900 4.4 35.4 2.0 1,500 250 350	23.6 11,000 6,600 16,500 31.2 39.4 2.0 350 800 1,000	□31.5 11,000 6,600 16,500 22.6 39.4 2.0 485 700 800	39.3 11,000 5,500 13,200 16.1 35.4 2.0 680 350 500	59 11,000 5,500 13,200 6.8 35.4 2.0 1,610 250 350	23.6 13,870 8,300 20,800 34.9 39.4 2.0 400 800 1,000	□31.5 13,870 8,300 20,800 26.2 39.4 2.0 530 700 800	39.3 13,870 6,900 16,600 20.2 35.4 2.0 680 350 500	☐ 59 13,870 6,900 16,600 8.6 35.4 2.0 1,610 250 350

Depending on the reference PSD or other conditions such as the characteristics of the specimen, one part of the controlled response may deviate from the reference PSD *The above is just an example. Specifications may be changed depending on test conditions. Please contact us for more information

TC-3000-6H

DS-series 2-Axis Simultaneous Systems

DS-2000-4H

Specifications

	System	Model	DS-1000-4H	DS-1000-6H	DS-1000-8H	DS-1000-10M	DS-2000-5H	DS-2000-8M	DS-2000-10M	DS-2000-1 <u>5M</u>	DS-3000-5H	DS-3000-8M
	Table S	ize (in)	15.7	23.6	31.5	39.3	500	31.5	39.3	59	19.6	31.5
		Sine (lbf)	2,200	2,200	2,200	2,200	4,400	4,400	4,400	4,400	6,600	6,600
	Rated Force	Random (lbf)	1,100	1,100	1,100	1,100	2,200	2,200	2,200	2,200	3,300	3,300
		Shock (lbf)	3,300	3,300	3,300	3,300	6,600	6,600	6,600	6,600	9,900	9,900
	Maximu	m Acceleration (g)	11	7.6	5.5	3.3	15.3	8.3	6.8	2.9	20.0	14.2
System	Maximu	m Velocity (in/s)	39.4	39.4	39.4	39.4	39.4	39.4	39.4	35.4	39.4	39.4
Specifications	Maximun	n Displacement (inp-p)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Armatur	e Mass (lbs)	200	290	400	660	290	530	640	1,500	330	460
	Maximum	Horizontal (Hz)	1,000	800	700	350	800	500	350	250	800	500
	Frequency	Vertical (Hz)	1,000	1,000	700	500	800	800	500	350	800	800
		m Load (lbs)	220	220	440	440	440	660	1,100	1,100	220	660
	Power F	Requirements (kVA)	30	30	30	30	66	66	66	66	76	76
	Primary (Cooling Water (gal/min)	_	-	_	_	-	-	—	-	-	-
	System	Model	DS-3000-10M	DS-3000-15M	DS-5000-6H	DS-5000-8H	DO 5000 10M	DS-5000-15M	DS-6000-6H	DS-6000-8H	DO 0000 4014	
											DS-6000-10M	DS-6000-15M
	Table S		39.3	59			39.3	□ 59	23.6	31.5		DS-6000-15M
	Table S		39.3		23.6	□ 31.5 11.000		59	23.6		39.3	59
	Rated	ize (in)		59	23.6	31.5	39.3			31.5		
		ize (in) Sine (lbf)	39.3 6,600	59 6,600	23.6 11,000	□ 31.5 11,000	39.3 31,000	59 11,000	23.6 13,870	31.5 13,870	39.3 33,870	59 13,870
	Rated Force	ize (in) Sine (lbf) Random (lbf)	39.3 6,600 3,300	59 6,600 3,300	23.6 11,000 6,600	31.5 11,000 6,600	39.3 11,000 5,500	59 11,000 5,500	23.6 13,870 8,300	31.5 13,870 8,300	39.3 13,870 6,900	59 13,870 6,900
System	Rated Force Maximut	ize (in) Sine (lbf) Random (lbf) Shock (lbf)	39.3 6,600 3,300 9,900	59 6,600 3,300 9,900	23.6 11,000 6,600 16,500	31.5 11,000 6,600 16,500	□ 39.3 11,000 5,500 13,200	□ 59 11,000 5,500 13,200	23.6 13,870 8,300 20,800	31.5 13,870 8,300 20,800	□ 39.3 13,870 6,900 16,600	59 13,870 6,900 16,600
System	Rated Force Maximu Maximu	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g)	39.3 6,600 3,300 9,900 9.3	59 6,600 3,300 9,900 4.8	23.6 11,000 6,600 16,500 35.7	31.5 11,000 6,600 16,500 20.8	39.3 11,000 5,500 13,200 16.6	□ 59 11,000 5,500 13,200 6.0	23.6 13,870 8,300 20,800 39.3	31.5 13,870 8,300 20,800 27.3	39.3 13,870 6,900 16,600 10.4	59 13,870 6,900 16,600 7.6
	Rated Force Maximu Maximu Maximu	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s)	39.3 6,600 3,300 9,900 9.3 39.4	59 6,600 3,300 9,900 4.8 35.4	23.6 11,000 6,600 16,500 35.7 39.4	31.5 11,000 6,600 16,500 20.8 39.4	39.3 11,000 5,500 13,200 16.6 35.4	59 11,000 5,500 13,200 6.0 35.4	23.6 13,870 8,300 20,800 39.3 39.4	31.5 13,870 8,300 20,800 27.3 39.4	39.3 13,870 6,900 16,600 10.4 35.4	59 13,870 6,900 16,600 7.6 35.4
Specifications	Rated Force Maximu Maximu Maximun Armatur Maximum	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs) Horizontal (Hz)	39.3 6,600 3,300 9,900 9.3 39.4 2.0	59 6,600 3,300 9,900 4.8 35.4 2.0	23.6 11,000 6,600 16,500 35.7 39.4 2.0	□ 31.5 11,000 6,600 16,500 20.8 39.4 2.0	39.3 11,000 5,500 13,200 16.6 35.4 2.0	59 11,000 5,500 13,200 6.0 35.4 2.0	23.6 13,870 8,300 20,800 39.3 39.4 2.0	31.5 13,870 8,300 20,800 27.3 39.4 2.0	39.3 13,870 6,900 16,600 10.4 35.4 2.0	☐ 59 13,870 6,900 16,600 7.6 35.4 2.0
Specifications	Rated Force Maximu Maximu Maximun Armatur Maximum	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs) Horizontal (Hz)	39.3 6,600 3,300 9,900 9.3 39.4 2.0 700	59 6,600 3,300 9,900 4.8 35.4 2.0 1,370	23.6 11,000 6,600 16,500 35.7 39.4 2.0 310	□ 31.5 11,000 6,600 16,500 20.8 39.4 2.0 530	39.3 11,000 5,500 13,200 16.6 35.4 2.0 660	59 11,000 5,500 13,200 6.0 35.4 2.0 1,810	23.6 13,870 8,300 20,800 39.3 39.4 2.0 350	31.5 13,870 8,300 20,800 27.3 39.4 2.0 510	39.3 13,870 6,900 16,600 10.4 35.4 2.0 1,320	☐ 59 13,870 6,900 16,600 7.6 35.4 2.0 1,810
Specifications	Rated Force Maximu Maximu Maximum Armatur Maximum Frequency	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs)	39.3 6,600 3,300 9,900 9.3 39.4 2.0 700 350	59 6,600 3,300 9,900 4.8 35.4 2.0 1,370 250	23.6 11,000 6,600 16,500 35.7 39.4 2.0 310 800	□ 31.5 11,000 6,600 16,500 20.8 39.4 2.0 530 700	39.3 11,000 5,500 13,200 16.6 35.4 2.0 660 350	59 11,000 5,500 13,200 6.0 35.4 2.0 1,810 250	23.6 13,870 8,300 20,800 39.3 39.4 2.0 350 800	31.5 13,870 8,300 20,800 27.3 39.4 2.0 510 700	39.3 13,870 6,900 16,600 10.4 35.4 2.0 1,320 350	59 13,870 6,900 16,600 7.6 35.4 2.0 1,810 250
Specifications	Rated Force Maximu Maximun Armatur Maximum Frequency Maximu	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs) Horizontal (Hz) Vertical (Hz)	39.3 6,600 3,300 9,900 9.3 39.4 2.0 700 350 500	59 6,600 3,300 9,900 4.8 35.4 2.0 1,370 250 350	23.6 11,000 6,600 16,500 35.7 39.4 2.0 310 800 1,000	□ 31.5 11,000 6,600 16,500 20.8 39.4 2.0 530 700 800	39.3 11,000 5,500 13,200 16.6 35.4 2.0 660 350 500	59 11,000 5,500 13,200 6.0 35.4 2.0 1,810 250 350	23.6 13,870 8,300 20,800 39.3 39.4 2.0 350 800 1,000	31.5 13,870 8,300 20,800 27.3 39.4 2.0 510 700 800	39.3 13,870 6,900 16,600 10.4 35.4 2.0 1,320 350 500	☐ 59 13,870 6,900 16,600 7.6 35.4 2.0 1,810 250 350

*Depending on the reference PSD or other conditions such as the characteristics of the specimen, one part of the controlled response may deviate from the reference PSD *The above is just an example. Specifications may be changed depending on test conditions. Please contact us for more information.

TS-series 3-Axis Simultaneous Systems

Specifications

		Model	TS-1000-4H	TS-1000-6H	TS-1000-8H	TS-1000-10M	TS-2000-5H	TS-2000-8M	TS-2000-10M	TS-2000-15M	TS-3000-5H	TS-3000-8M
	Table S	ize (in)	15.7	23.6	31.5	39.3	19.6	31.5	39.3	59	19.6	31.5
	Deteri	Sine (lbf)	2,200	2,200	2,200	2,200	4,410	4,400	4,400	4,400	6,600	6,600
	Rated Force	Random (lbf)	1,100	1,100	1,100	1,100	2,200	2,200	2,200	2,200	3,300	3,300
		Shock (lbf)	3,300	3,300	3,300	3,300	6,600	6,600	6,600	6,600	9,960	9,960
	Maximu	m Acceleration (g)	10.0	6.6	4.3	3.4	16.6	10.0	6.6	3.1	20.0	11.5
System	Maximu	m Velocity (in/s)	39.4	39.4	39.4	39.4	39.4	39.4	39.4	35.4	39.4	39.4
Specifications	Maximun	n Displacement (inp-p)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	Armatur	e Mass (lbs)	220	330	510	640	270	440	660	1,410	330	570
	Maximum	Horizontal (Hz)	1,000	800	700	350	800	500	350	250	800	500
	Frequency	Vertical (Hz)	1,000	1,000	700	500	800	800	500	350	800	800
		m Load (lbs)	220	220	440	440	440	660	1,100	1,100	440	660
	Power F	Requirements (kVA)	41	41	41	41	94	94	94	94	110	110
	Primary (Cooling Water (gal/min)	-	-	-	-	-	-	-	-	-	-
	System	Model	TS-3000-10M	TS-3000-15M	TS-5000-6H	TS-5000-8H	TS-5000-10M	TS-5000-15M	TS-6000-6H	TS-6000-8H	TS-6000-10M	TS-6000-15M
_	System Table S		TS-3000-10M	TS-3000-15M	TS-5000-6H	TS-5000-8H	TS-5000-10M	TS-5000-15M	TS-6000-6H	TS-6000-8H	TS-6000-10M	TS-6000-15M
	Table S											
	Table S Rated	ize (in)	39.3	59	23.6	31.5	39.3	59	23.6	31.5	39.3	59
	Table S	ize (in) Sine (lbf)	39.3 6,600	59 6,600	23.6 11,000	31.5 11,000	39.3 11,000	59 59 11,000	23.6 13,870	31.5 13,870	39.3 33,870	59 13,870
	Table S Rated Force	ize (in) Sine (lbf) Random (lbf)	39.3 6,600 3,300	59 6,600 3,300	23.6 11,000 6,600	31.5 11,000 6,600	39.3 11,000 5,500	59 11,000 5,500	23.6 13,870 8,300	31.5 13,870 8,300	39.3 13,870 6,900	59 13,870 6,900
System	Table S Rated Force Maximut	ize (in) Sine (lbf) Random (lbf) Shock (lbf)	39.3 6,600 3,300 9,960	59 6,600 3,300 9,960	23.6 11,000 6,600 16,500	31.5 11,000 6,600 16,500	39.3 11,000 5,500 13,200	59 11,000 5,500 13,200	23.6 13,870 8,300 20,800	31.5 13,870 8,300 20,800	39.3 13,870 6,900 16,60 0	59 13,870 6,900 16,600
System Specifications	Table S Rated Force Maximu Maximu	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g)	39.3 6,600 3,300 9,960 7.4	59 6,600 3,300 9,960 4.4	23.6 11,000 6,600 16,500 31.2	31.5 11,000 6,600 16,500 22.6	39.3 11,000 5,500 13,200 16.1	59 11,000 5,500 13,200 6.8	23.6 13,870 8,300 20,800 34.9	□ 31.5 13,870 8,300 20,800 26.5	39.3 13,870 6,900 16,60 0 20.2	59 13,870 6,900 16,600 8.6
	Table S Rated Force Maximu Maximu Maximu	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s)	39.3 6,600 3,300 9,960 7.4 39.4	59 6,600 3,300 9,960 4.4 35.4	23.6 11,000 6,600 16,500 31.2 39.4	31.5 11,000 6,600 16,500 22.6 39.4	39.3 11,000 5,500 13,200 16.1 35.4	59 11,000 5,500 13,200 6.8 35.4	23.6 13,870 8,300 20,800 34.9 39.4	31.5 13,870 8,300 20,800 26.5 39.4	39.3 13,870 6,900 16,60 0 20.2 35.4	59 13,870 6,900 16,600 8.6 35.4
Specifications	Table S Rated Force Maximu Maximu Armatur Maximum	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs) Horizontal (Hz)	39.3 6,600 3,300 9,960 7.4 39.4 2.0	☐ 59 6,600 3,300 9,960 4.4 35.4 2.0	23.6 11,000 6,600 16,500 31.2 39.4 2.0	□ 31.5 11,000 6,600 16,500 22.6 39.4 2.0	39.3 11,000 5,500 13,200 16.1 35.4 2.0	59 11,000 5,500 13,200 6.8 35.4 2.0	23.6 13,870 8,300 20,800 34.9 39.4 2.0	□ 31.5 13,870 8,300 20,800 26.5 39.4 2.0	39.3 13,870 6,900 16,60 0 20.2 35.4 2.0	59 13,870 6,900 16,600 8.6 35.4 2.0
Specifications	Table S Rated Force Maximu Maximu Armatur Maximum	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs) Horizontal (Hz)	39.3 6,600 3,300 9,960 7.4 39.4 2.0 880	☐ 59 6,600 3,300 9,960 4.4 35.4 2.0 1,500	23.6 11,000 6,600 16,500 31.2 39.4 2.0 350	□ 31.5 11,000 6,600 16,500 22.6 39.4 2.0 485	39.3 11,000 5,500 13,200 16.1 35.4 2.0 680	☐ 59 11,000 5,500 13,200 6.8 35.4 2.0 1,610	23.6 13,870 8,300 20,800 34.9 39.4 2.0 400	□ 31.5 13,870 8,300 20,800 26.5 39.4 2.0 530	39.3 13,870 6,900 16,60 0 20.2 35.4 2.0 680	59 13,870 6,900 16,600 8.6 35.4 2.0 1,610
Specifications	Table S Rated Force Maximun Maximun Armatur Maximum Frequency	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs)	39.3 6,600 3,300 9,960 7.4 39.4 2.0 880 350	☐ 59 6,600 3,300 9,960 4.4 35.4 2.0 1,500 250	23.6 11,000 6,600 16,500 31.2 39.4 2.0 350 800	□ 31.5 11,000 6,600 16,500 22.6 39.4 2.0 485 700	39.3 11,000 5,500 13,200 16.1 35.4 2.0 680 350	☐ 59 11,000 5,500 13,200 6.8 35.4 2.0 1,610 250	23.6 13,870 8,300 20,800 34.9 39.4 2.0 400 800	□ 31.5 13,870 8,300 20,800 26.5 39.4 2.0 530 700	39.3 13,870 6,900 16,60 0 20.2 35.4 2.0 680 350	59 13,870 6,900 16,600 8.6 35.4 2.0 1,610 250
Specifications	Table S Rated Force Maximul Maximum Armatur Maximum Frequency Maximu	ize (in) Sine (lbf) Random (lbf) Shock (lbf) m Acceleration (g) m Velocity (in/s) n Displacement (inp-p) e Mass (lbs) Horizontal (Hz) Vertical (Hz)	39.3 6,600 3,300 9,960 7.4 39.4 2.0 880 350 500	59 6,600 3,300 9,960 4.4 35.4 2.0 1,500 250 350	23.6 11,000 6,600 16,500 31.2 39.4 2.0 350 800 1,000	31.5 11,000 6,600 16,500 22.6 39.4 2.0 485 700 800	39.3 11,000 5,500 13,200 16.1 35.4 2.0 680 350 500	59 11,000 5,500 13,200 6.8 35.4 2.0 1,610 250 350	23.6 13,870 8,300 20,800 34.9 39.4 2.0 400 800 1,000	□ 31.5 13,870 8,300 20,800 26.5 39.4 2.0 530 700 800	39.3 13,870 6,900 16,60 0 20.2 35.4 2.0 680 350 500	59 13,870 6,900 16,600 8.6 35.4 2.0 1,610 250 350

*Depending on the reference PSD or other conditions such as the characteristics of the specimen, one part of the controlled response may deviate from the reference PSD *The above is just an example. Specifications may be changed depending on test conditions. Please contact us for more information.

31

TS-1000-4H

TTS-series 6 Degrees of Freedom Systems

6 degrees of freedom systems

At least 6 vibration shakers are located in 3D space with integrated control and can create 6 degrees of freedom motion (3 translation degrees of freedom and 3 rotating degrees).

In addition to X, Y, and Z axis motion, rotational motion, roll, pitch and yaw are also possible with spherical bearings.

Using electrodynamic vibration generators, IMV systems can reproduce waveforms which have components in a wide frequency range with a high degree of accuracy. System maintenance is easy. Systems comprise at least six vibration generators that act along orthogonal axes and also generate the roll, pitch and yaw components of vibration. A spherical bearing is used to allow the rotational motion. By using electrodynamic vibration generators the system can operate over a wide frequency range with a high degree of accuracy. System maintenance is straight-forward.

Ride comfort evaluation system

The addition of rotational motion to a three-axis system enables 6 degree-of freedom testing, as is required for vehicle seat evaluation, for example.

Large-scale 6 DOF vibration test system

A total of 10 vibration generators (6 vertical and 4 horizontal) and a large size 157- by 138-inch table allow simultaneous 6 DOF vibration testing. This versatile platform is ideal for testing large items such as railway carriage components.

6 DOF simultaneous squeak and rattle test system for vehicle seats

An air-cooled vibration test system for the evaluation of squeak and rattle noises from an instrument panel or other car interior assemblies.

33

Rated Force (lbf) 877 1,754 3,597 5.0 4.0 10

Maximum displacement (inp-p)	0.9	4.0	4.0
Frequency Range (Hz)		1 - 100	
Table Size (in)		71 × 71	
Vibration Generator	1	2	4

(Per 1 system

Watch the YouTube video

- 2012/00/4

Excitation direction	X axis	Y axis	Z axis
Rated Force (lbf)	17,985	10,791	21,582
Maximum displacement (inp-p)		2.0	
Frequency Range (Hz)		2 - 150	
Table Size (in)		157 × 138	
Vibration Generator	2	2	6

(Per 1 system)

Excitation direction	X axis	Y axis	Z axis
Rated Force (N)	360	360	719
Maximum displacement (inp-p)		1.2	
Frequency Range (Hz)		5 - 100	
Table Size (in)		59 × 138	
Vibration Generator	2	2	4

(Per 1 system)

Vibration Controller K2+

1 - 1 - 1 - 1 - H - H - H - H - H

--

Common hardware supports all types of vibration tests.

R and H

The K2+ controller provides the precision and repeatability required to test with confidence during both product development and series production. The K2+ hardware and software has been developed in-house, giving IMV full design control of this important part of a vibration system. The K2+ system offers enhanced functions and operability based on the most advanced technologies and incorporating feedback from our customers.

Vibration Controller

System Composition

3NC Cab pration Generato Sensor Cable With built-in charge amplifier, IEPE (ICP) power supply and

TEDS connectivity, an external signal conditioner is not required.

[Backside of K2+]

Hardware Specifications

Main Enclosure	
Number of Slots	3
AC Power	Single-phase AC, 100 V-240 V (auto-selected)
External Communication	Contact I/O (for emergency stop)
Ambient Conditions	0-40°C, below 85% RH, non-condensing
Dimensions	W430 × H100 × D383 mm (not including projecting parts)
Mass	Approximately 7.0 kg

Minimum Specifications of PC

 One LAN port Gigabyte ethernet port and Gigabyte ethernet cable
 Microsoft Windows 10 Pro (64 bit) or Windows 10 IoT Enterprise (64 bit)*. Memory required (for 8 input channels)

- 4 GB or more • DVD-ROM Drive (required for installation)

 One USB port (necessary for protect device)
 Resolution of monitor and PC required 1280 x 1024 or more * Recommended OS and memory vary depending on software, options number of I/O channels, etc.

*Please note that optional software "Program K2+" used for vibration controller K2+ also requires Japanese government export license (E/L).

Se Output

Up to two modules can be added as an option to the standard cabinet. ► 4 channel input and 4 channel output module are standard.

The monitor output provides a conditioned version of the acceleration signal which can be monitored by external equipment, e.g. oscilloscope or datalogger.

LAN Cable

		annel Input and utput Module (standard)	8-channel Input Module (option)
Number of Channels		4	8
Input Connector		BN	
Input Signal		Charge, Voltage (Single-	ended/Differential), IEPE
Charge Amplifier Sensitivity		1.0 mV/pC o	or 10 mV/pC
Charge Amplifier Cut-off		0.32	2 Hz
Maximum Input	Charge Input	±10000 pC or ±1000 pC	
	Voltage Input	±10000 mV	
	IEPE input	±10000 mV	
Sampling Frequency		102.4 kHz	maximum
Voltage Input Coupling		AC o	r DC
AC Coupling Cut-off		0.1	Hz
CCLD Amplifier (IEPE)		+24 VDC	c, 3.5 mA
TEDS (IEPE)		Version 0.9,	Version 1.0
A/D Converter	Туре	ΔΣ	
	Resolution	32 bit	
	Dynamic range	121 dB	
	Digital filter	Pass-band ripple: +0.001,	-0.06 dB, Stop-band attenuation: 85 dB
Number of Channels	4 (One channel	is reserved for drive output)	
Output Connector	BNC		
Output Signal	Voltage		
Maximum Output	±10000 mV		
Sampling Frequency	102.4 kHz m	aximum	
D/A Converter	Туре	ΔΣ	
	Resolution	32 bit	
	Dynamic range	120 dB	
	Digital filter	Pass-band ripple: ±0.005 dB Stop-band attenuation: 100 dB	

Intuitive Operation

* Standard for A-series and K-series

Null - Tax tun (200)
 Intel - Tax tun (200)

A test file will be automatically generated upon selection of Several different test types are executed automatically and in sequence according to the pre-defined schedule.

Optional Test Standards

The main test standards stored in the Launcher software (Ver 22.2.0.0 onwards) are as follows as of December 2022. The Launcher software is an option for the K2+.

the test conditions defined by the test standards.

JIS C 60068	Sine, Random, Shock
JIS D 1601	Automotive parts simulated long-life test
JIS E 4031	Railway vehicle parts functional test, Simulated long-life test
JIS Z 0200	Transportation test
JIS Z 0232	Transportation test (Random)
JASO D 014	Automotive parts functional test
ASTM	Transportation test
UN	Lithium-ion battery test recommendated by UN
ISO16750	Automotive parts test
ISO12405	Electric vehicle
IEC60068	Sine, Random, Shock
IEC62660	Random, Shock for secondary lithium-ion cells of electric vehicles
ISTA	Transportation test
IEC61373	Railway vehicle parts functional test
ISO13355	Transportation test (Random)
ISO4180	Transportation test
ISO19453	Electric vehicle parts
JIS E 3014	Parts for railway signal
EIA 364	Electrical connector performance test

*Version upgrade will incur an additional cost.

Option

LAUNCHER

Test file will be automatically generated upon selection of the test conditions defined by the test standards. Then, the test can be carried out just by pressing the start button.

Built-in "Quick Help" provides guidance for each operation.

K2 DataViewer Free software

Software for displaying results in data files saved after SINE, RANDOM and SHOCK tests. It can be used for display of test conditions, graphed results, or for comparison between past test data (overlapping display) and generation of reports.

Test conditions, graph of results

System Requirements [Supported OS]

[Memorv] [Hard Disk]

Report

* Please refer to the following for the test standards.

Scheduler

[Vibration Controller] K2+

37

SYSTEM MONITOR

Statuses for vibration generator, amplifier test proceeding, and specimen can be observed on a PC or tablet by either wired or wireless LAN. Solutions can be seen on the Web browser upon the occurrence of any error. Installation of additional software is not necessary for PC or tablet.

Eco screen

Camera screen

3D graph

Overlapping display

Windows 10 (64 bit), Windows 7 (32 bit/64 bit)

More than 512 MB of RAM is recommended

More than 200 MB of free space is required

Application site

Software

Basic Software	Specifications	Optional software
	 Control Algorithm Continuous closed-loop control of true rms level Control Frequency Range 0.1-20000 Hz Control Dynamic Range More than 120 dB Operation Modes 1) Continuous sweep, Spot, Manual 2) Closed-loop, Open-loop Measurement Method Average, RMS, Tracking Multiple-Channel Control Modes Average control, Maximum control, Minimum control Input Channels Maximum 20 *Specifications may be affected by other conditions 	 R_DWELL: Resonance Dwell Resonance is detected by measuring the phase difference between the control point and the response signal from a resonant part of the item under test. The test frequency is controlled in order to maintain resonance as the structure fatigues. After holding at the same resonance for a pre-defined duration, sweeping can be resumed until the next resonance is detected. A_DWELL: Amplitude Dwell A transmissibility plot is taken from two points on the structure under test and resonances listed. A sine test can then be run at each resonant frequency, with tracking of the resonance by either amplitude or phase. LIMIT CONTROL Response channels can be specified as limit control channel would exceed its limit, the test level is reduced accordingly. Multi Sweep Sine A traditional wide-band sine sweeps, which when added together combine to cover the original wide band. Running the narrow band sweeps in parallel significantly reduces the test time required.
	 Control Algorithm Closed-loop control of PSD within each spectral line Control Frequency Range Maximum 20000 Hz Number of Control Lines Maximum 25600 lines Control Dynamic Range More than 98 dB Loop Time 200 ms (fmas = 2000 Hz, at L = 400 line) Multiple-Channel Control Modes Average control, Maximum control, Minimum control Input Channels Maximum 20 *Specifications may be affected by other conditions 	 SOR: Sine on Random Random vibration and sine vibration frequencies are combined. Sine vibration can be swept. ROR: Random on Random Broad-band random combined with sweeping or non-sweeping narrow-band random overlaid. EXTENDED ROR The extended ROR makes it possible to operate an ROR test with greater freedom when defining separate NBR references. PSD LIMIT: PSD limit control Response channels can be specified as limit control channels. If the PSD on a limit control channel would exceed its limit, the test level is reduced over that range of frequencies to keep with the limit level. Non-Gaussian A vibration testing method which precisely reproduces non-Gaussian vibration, such as transportation vibrations with large spikes. Soft-Clipping A clipping function that can reduce the peak value of the output voltage without affecting control performance.
	 Control Algorithm Finite-length waveform controlled by feed forward method Control Frequency Range Maximum 20000 Hz Number of Control Lines Maximum 25600 lines Control Dynamic Range More than 98 dB Type of Reference Waveform Classical shock waveform (Half-sine, Haversine, Saw-tooth, Triangle, Trapezoid, etc.), Sine beat waveform, Measured waveform etc. Input Channels Maximum 20 	 LONG WAVEFORM The length of a reference waveform is a standard 16 K points. This can be increased to 200 K points by adding the LONG WAVEFORM option. At a sampling frequency of 512 Hz for example, this produces approximately 6.5 minutes of waveform, compared to the standard length of approximately 30 seconds. MEGAPOINT A further increase in waveform duration can be obtained by adding the MEGAPOINT option to the LONG WAVEFORM option. This increases the record length to 5000 K points, about 163 minutes at 512 Hz sampling rate. SRS: Shock Response Spectrum SRS (Shock Response Spectrum) can execute a test in which the test conditions and evaluation are conducted not based on waveform itself, but on SRS analysis. With a standard shock test selected, SRS analysis of response waveform is also possible.

	Common optional software			
	CAPTURE: Analogue waveform signal data program	Provides analogue waveform signal · Sampling capture. Saved data can then be used as a reference for SHOCK, BMAC waveform controls or Random vibration PSD control. · Waveform	gt an	
	SCHEDULER : Test scheduler	Pre-defined tests can be executed in sequence.		
TCP Communication Serv		TCP communication server software that allows external applications t		

39

Specifications	Optional Software
rithm (Three modes of control)	• LIMIT CONTROL
rithm (Three modes of control) osed-loop control of true rms level veform controlled by feed forward method and minimizing of cross-axis components uency Range z esolution ¹⁴ of frequency unic Range 0 dB odes s sweep, Spot test d monitoring in various physical units lethod 5, Tracking nnel Control Modes rol, Maximum control, Minimum control els (Maximum 20 chs for principal control channel) nel may be affected by other conditions	• LIMIT CONTROL If a response point is specified to be a limit control channel, the level of that response point will not exceed the level specified in the test.
· ·	
rithm (Three modes of control) dom signal closed loop control by spectrum density iency segment waveform controlled by feed forward method and minimizing of cross-axis components uency Range 000 Hz ontrol Lines 000 lines amic Range dB suit, 3-output control, 120 DOF, fmax = 2000 Hz, L = s-talk information averaging times = 8 times/loop) nnel Control Modes rol, Maximum control, Minimum control sis (Maximum 20 chs for principal control channel) nel may be affected by other conditions	 PSD LIMIT CONTROL If a response point is specified to be a limit control channel, the level of PSD doesn't exceed the specified PSD level in the test. Non-Gaussian A vibration testing method which precisely reproduces non-Gaussian vibration, such as transportation vibrations with large spikes.
rithm waveform controlled by feed forward method uency Range J000 Hz ontrol Lines S00 lines amic Range dB rence Waveform k:waveform (Half-sine, Haversine, Saw-tooth, Triangle,), Sine beat waveform, Measured waveform etc. ference Waveform J0 k points els nel may be affected by other conditions	• SRS: Shock Response Spectrum SRS (Shock Response Spectrum) can execute a test in which the test conditions and evaluation are conducted not based on waveform itself, but on SRS analysis. With a standard shock test selected, SRS analysis of response waveform is also possible.
Outline	
Frequency 51.2 kHz maximum	

g Frequency 51.2 kHz maximum Igth Maximum 5000 k points annel Maximum 24 n edit/analysis function Filtering, Frequency transfer processing, PSD transfer, Transmissibility ratio between channels

s to operate K2 applications and acquire vibration data and operating status by sending and receiving commands via TCP/IP.

With IMV's approach to a more realistic reproduction of the vibration environment, IMV is focused on making products that are customized to the specific needs of our customers. IMV is proud of our tireless contributions to improving product safety and comfort for society as a whole through increasing product reliability as a "solution partner" for all industries.

Customized Products [Case Studies]

Customized Products Automotive Parts

Case Studies

Electrodynamic multi-axis 4 poster system

Accurate waveform reproduction is achieved over a wide frequency range of up to 500 Hz by employing electrodynamic vibration generators.

Torsion vibration test system

By building compact shakers on top of a multi-axis test system and exciting both systems simultaneously, reproduction of 'real road' 6-DOF and torsion is achieved.

41

3-axis simultaneous vibration test system

Test systems for the automotive tire industry, used for evaluating the transfer characteristics of a tire at varying air volumes and ride comfort.

Low cross-axis motion vibration test system

Ensures low cross-axis motion, equipped with a mechanism that matches the center of gravity of the assembly of specimen + fixture (+ slip table) to the excitation axis through vertical motion of the table-support bearing assembly.

Customized Products Automotive Parts

Case Studies

6-DOF vibration test system

Evaluate road noise generated by a car by placing the test system under the wheel of the car and focusing vibration of 6-DOF nature into one wheel.

6-DOF large vibration test system

A reproduction of ultimate vibration realism for testing the ride comfort of car seats with a 6-DOF vibration test system.

Diagonal excitation vibration test system

Diagonal excitation for two-wheeled vehicles. Angle of rotation for the vibration generator can be adjusted in 1 degree increments.

7.9 in peak-to-peak displacement vibration test system

This system is particularly suited for applications requiring high velocity at low frequencies. It has a high over-turning moment due to a lateral load reinforcement guide, allowing tests of specimens with a large offset center of gravity.

6-DOF simultaneous squeak-and-rattle test system for instrument panels

A 6-DOF vibration test system with 8 compact, silent shakers for squeak-and-rattle acoustic noise evaluation of instrument panels.

Environmental test system

Environmental test system combining vibration, temperature, gasoline circulation, oil circulation and rotational drive.

43

Torsion test system (6 DOF + Torsion vibration test system)

A 6 DOF vibration test with measured running data is possible. Torsion on a car body can be simulated while the car is running.

Exhaust system durability testing

Durability testing with hot air and vibration. Air temperature range is $392^{\circ}F$ to $1652^{\circ}F$ and airflow from 79 to 394 in³/min is channeled into the exhaust system from a hot air generator.

Customized Products Automotive Parts

Case Studies

Dynamic spring constant measuring system

Highly accurate testing and analysis are possible over a wide frequency range from 1 Hz up to 2,000 Hz.

Low-acoustic-noise 3-axis vibration test system + guide rail

A vibration system can be set up to move along guide rails. The system can be combined with other test equipment if necessary, for example a temperature chamber.

Low-acoustic-noise 3-axis vibration test system

Simulation testing using actual measured data or more traditional random testing is possible in 3-axis simultaneous excitation. When combining the shaker system with a half-anechoic room, 3D squeak-and-rattle testing is possible in an environment with a background noise level of less than 30 dB

Vertical/Horizontal changeover chamber combined with vibration test system

Used for durability testing of on-board battery chargers and inverters/DC-DC converters for electric cars. Vertical and horizontal excitation, both combined with a chamber, is possible.

2-axis climatic chamber combined with vibration test system

A double-sided door makes it easy to reach the specimen. This system is equipped with a temperature alarm meter for surface temperature monitoring and CO₂ automatic fire extinguisher. Sine: 1,000 Hz, Random: 2,000 Hz

Ultra-high temperature (1652°F) chamber combined with single-axis vibration test system

Applicable to temperature and humidity environmental testing for products which may be exposed to ultra-high temperatures of up to 1652°F. Employs the virtual point control method to control acceleration of the specimen in the chamber without accelerometers mounted.

45

3-axis simultaneous vibration test system

Simultaneous 3-axis vibration test system designed for earthquake resistance tests and earthquake regeneration. Vibrations in three directions can be simultaneously applied to the specimen.

Compact chamber combined with vibration test system

Function tests and durability tests of parts exposed to sudden temperature change are possible.

Customized Products Electronic Parts

Case Studies

Sensor calibration vibration test system

Pure single-axis vibration which is very hard to generate with a conventional single-axis system. 4 vibration generators are located orthogonally to the major axis to cancel unwanted cross-axis acceleration.

High-frequency vibration test system

Combining 4 low-noise, compact vibration test systems with a chamber and using multi-point control, vibration excitation combined with a climatic test is achieved from 2 kHz up to 10 kHz.

Environmental test system

Large area heat resistance glass (-104°F to 230°F) is provided for checking the specimen inside the chamber during a combined test. To reduce the required installation space, a guide rail system is used with the vibration test system and horizontal slip table.

Crimping terminal evaluation system

Setup time is reduced with a dedicated fixture for various sizes of crimping terminal. 8 to 20 samples can be evaluated at one time.

Customized Products Transportation Test Case Studies

Underslung 6-DOF vibration test system (Railway testing)

A combination of 10 vibration generators (6 vertical and 4 horizontal) and a 157 by 138 in large-scale moving table allowing simultaneous, multi-point vibration testing. This versatile vibration platform is ideal for testing large items such as railway carriage parts and fuel cells.

3-axis large vibration test system for transportation simulation

Vibration test system for very large specimens. Moving table size is 118 in \times 79 in composed of 2 off 28,100 lbf shakers for the X and Y axes and 2 off 13,490 lbf shakers for the Z axis.

Case Studies

3-axis simultaneous vibration test system

Watch the YouTube video

Simultaneous, multi-axis vibration data acquisition with IMV's vibration measurement unit built into a railway container. Data is subsequently used for a real waveform 3-axis simultaneous vibration test.

2-axis large vibration test system

Table size 79 x 98 in, Maximum load 4,410 lbs Transportation test for large specimens or vibration durability test

Customized Products Construction Machinery

Case Studies

(Guide system with air spring load support)

Energy-saving vibration test system with large slip table

Maximum load is 4,410 lbs (when used with the lateral load reinforcement guide or slip table). The built-in automatic ECO function optimizes power consumption across all vibration test types.

3-axis changeover vibration test system

Once the specimen and fixture are set, it is possible to switch the X/Y/Z axis excitation automatically. No time is spent remounting specimens or assemblies. Tests can be easily continued without time loss.

6-DOF vibration test systems

Durability testing with real measured waveforms for excavator cabins or heavy machinery tanks. The system reproduces vibration in X, Y, and Z axes as well as roll, pitch and yaw.

Large vibration test system for high-frequency testing (up to 5000 Hz)

For high-frequency tests with large specimens. The slip table can be replaced according to the size of the specimen and each table can be used for high-frequency testing.

Customized Products Constrained Earthquake Resistance Case Studies Studies Studies

Large-scale earthquake-resistance vibration test systems

YouTube video

Watch the

The unique hybrid method achieves accurate reproduction of both large-displacement and high-frequency waveforms by utilizing the benefits from an electrodynamic shaker and an AC servomotor.

Large 2-axis simultaneous, multi-point excitation vibration test system

Large vibration test system with a table size of 177 in × 177 in. Rated displacement: 16 in peak-to-peak horizontal, 8 in peak-to-peak vertical. Maximum load of 44,000 lbs.

Case Studies

Large-scale earthquake resistance vibration test systems

An industry first, hybrid technology low-frequency vibration test system which simulates highly accurate waveforms including high- and low-frequency components simultaneously with an electrodynamic shaker and AC servomotor.

Earthquake resistance vibration test system for seismic switches

Hydraulic bearing (Type TT) makes it possible to achieve a waveform reproduction error ratio within 2% using only 2 or 3 drive signal updates.

Maximum displacement: 5.9 inp-p Frequency range: 0.5-20 Hz

Customized Products

Case Studies

Watch the

YouTube video

78,700 lbf large water-cooled vibration test system

One of the world's largest excitation force systems, with a distinctive 3.0 inp-p alternative displacement rating. High-velocity shock tests of 138 in/s are also possible.

Vibration test systems for clean rooms

The air inlet and outlet for the shaker are ducted from outside of the clean room; this maintains the cleanliness of the room.

Large-scale 45,000 lbf vibration test systems for the aerospace industry

With low displacement requirements for the aerospace industry, this system is fitted with a Team slip table using the T-Film bearing. High over-turning moment and low cross-axis acceleration are features of this system in both vertical and horizontal operation.

Multi-point, multi-axis vibration test system

Multi-point vibration test system with three-axis simultaneous excitation. The system has the capability to carry out tests of very long specimens over a high frequency range.

Customized Products etc. Other Applications

Vibration test system for fatigue testing of copper plating

Especially developed for the fatigue testing of copper plating by customizing a compact shaker from IMV's m-series. Simultaneous testing of 12 sheets of copper plating is possible with this compact system.

Vibration test system with acid-resistant table

A standard specification slip table with alumite coating (as an example) is not suitable for vibration testing in the battery industry due to damage caused by leaking battery chemicals. A specially-formulated coating for the slip table is applied which is resistant to battery leaks.

Case Studies

51

Compact vibration test system for sensor calibration

This system realizes low distortion in low-frequency and low-acceleration areas and is used as a calibrator at JQA and other public institutions.

Pressure-proof flexible duct

The neutral position of the horizontal slip table can be adjusted and the slip table displacement is controlled as well. This allows a specimen to be permanently and rigidly fixed on one side and mounted on the slip table on the other side.

Vibration Test Systems Environmental Test Systems

Manufactured products can be exposed to both thermal and mechanical stresses. These should not be considered separately, as the effects may be linked. IMV can supply vibration-test systems combined with climatic chambers to provide complete environmental testing for vibration, temperature and humidity. These systems can be custom-designed to meet your application.

Chamber for Vertical Excitation

Docking image of combined systems

E

53

Inner pressure regulator: Reduces internal pressure fluctuation caused by vibration (standard equipment)

Model: Syn-3HA-40-V

Internal dimensions	W 39.3 x D 39.3 x H 43.3 in
Temperature range	-40°C to + 150°C
Humidity range	20% to 95% RH
Temperature pull-down time	+20°C => -40°C In 60 minutes (Curve gradient)
Temperature heat-up time	-40°C => +150°C In 90 minutes (Curve gradient)

Model: Syn-6HW-30-V

Internal dimensions	W 70.9 x D 74.8 x H 59.0 in
Temperature range	-30°C to + 80°C
Humidity range	30% to 95% RH
Temperature pull-down time	+45°C => -30°C In 35 minutes (Curve gradient)
Temperature heat-up time	-30°C => +80°C In 25 minutes (Curve gradient)

Chamber for both Vertical and Horizontal Excitation

Horizontal slip table combined with vibration test system. Combining a rail support for horizontal movement and a lift support for vertical movement,

this chamber allows combined tests for both vertical and horizontal axes.

Rail and lift support

Model: Syn-3HA-70-VH

-	
Internal dimensions	W 39.3 x D 39.3 x H 39.3 in
Temperature range	-70°C to + 180°C
Humidity range	20% to 98% RH
Temperature pull-down time	1°C/minutes or more (Curve gradient)
Temperature heat-up time	2°C/minutes or more (Curve gradient)

Watch the YouTube video Option for chambers for both vertical and horizontal excitation

Optional crane

Adding a dedicated crane provides safe and simple loading and unloading of test specimens.

Side window

With a side window, chamber-combined docking is possible with the specimen attached to the shaker for vertical excitation use.

Optional crane and observation door

The vertical base can be attached and detached using the optional crane with the head expander straying mounted on the vibration generator. In addition, operator-friendly features are equipped, such as an observation door, body-suspension automatic-adjustment mechanism, etc.

Cable bear

Cables and water pipes put together with the cable carrier promote a safe work environment.

Chamber for Multi-Axis Excitation

Temperature and humidity chamber for multi-axis vibration test system. Total test time can be reduced by eliminating the need to reconfigure for testing each axis.

2-axis

Model: Syn-4HA-40-M	
Internal dimensions	W 47.2 x D 47.2 x H 39.3 in
Temperature range	-40°C to + 150°C
Humidity range	20% to 98% RH
Temperature pull-down time	+20°C => -40°C In 80 minutes (Load condition:combined + aluminum 132 lbs)
Temperature heat-up time	-40°C => +150°C In 80 minutes (Load condition:combined + aluminum 132 lbs)

Prefabricated Chamber for Large Specimens

Large-sized specimens can be tested with a chamber combined test in both the vertical and horizontal axes.

Model: Syn-6HA-40-VH

Internal dimensions	W 157.4 x D78.7 x H98.4 in
Temperature range	-40°C to + 120°C
Humidity range	30% to 95% RH
Temperature pull-down time	+20°C => -40°C In 120 minutes (Curve gradient)
Temperature heat-up time	-40°C => +150°C In 150 minutes (Curve gradient)

3-axis

Model: Syn-3HA-40-M

Internal dimensions	W 39.3 x D 39.3 x H39.3 in
Temperature range	-70°C to + 180°C
Humidity range	20% to 98% RH
Temperature pull-down time	+20°C => -70°C In 40 minutes (Curve gradient)
Temperature heat-up time	-70°C => +180°C In 40 minutes (Curve gradient)

Docking image of combined systems

Vibration generator for vertical excitation

For installation of vibration test systems

Basic units used for vibration test

There are four important units for a vibration test. Force [N], Acceleration [m/s²], Velocity [m/s], and Displacement [mm peak-to-peak (p-p)]

The force "F" required to give an object of mass, "m" acceleration "A" is:

		SI units	Gravitational units
	F: force	[N]	[kgf]
F=mA	m: mass	[kg]	[kg]
	A: acceleration	[m/s²]	[G]

That is to say, when a mass of 1 kg is accelerated to an acceleration of 1 m/s² the required force is 1 N. Gravitational acceleration "G" equals to 9.8 m/s².

To describe vibration, frequency and vibration level need to be specified. Vibration is a form of movement with a consequent relationship between acceleration, velocity and displacement. To describe vibration level, any of these units can be used. Here are the relationships between each of the units.

We have an object moving in a sine wave.

The displacement is:

$D = D0 \sin\omega t$

The velocity is obtained by differentiation of the displacement. Therefore $V = \frac{dD}{dD}$

 $V = \omega D0 \cos \omega t$

The acceleration is obtained by differentiation of the velocity. Therefore

 $A = \frac{dV}{dt}$

A = $-\omega^2 D0 \sin \omega t$

As we substitute

 $\omega = 2\pi ft$

We have formulae indicated only in amplitude:

$V = \omega D = 2\pi f D$ $A = \omega^2 D = (2\pi f)^2 D$	D:Displacement V:Velocity A:Acceleration	[m ^{0-p}] [m/s] [m/s ²]
	A.Acceleration	[m/s]

The following diagram shows waveforms for displacement, velocity and acceleration.

We get the formulae below by transforming the above formulae

 $f = \frac{A}{2\pi V}$ $A = \frac{V^2}{D}$ $V = 2\pi fD$ $D = \frac{A}{(2\pi f)^2}$ In the field of vibration test, we use mm p-p for peak to peak displacement. Therefore

 $D = \frac{d}{2000}$

is substituted into all of the above formulae

$f = \frac{A}{2\pi V}$ f: Frequency [Hz]		
$V = \frac{2\pi f d}{2000}$ V: Velocity [m/s]	$A = \frac{(2\pi f)^2 d}{2000}$ $V = \frac{2\pi f d}{2000}$	A: Acceleration [m/s²] V: Velocity [m/s]

The following is an example

[ex] i) f = 50 [Hz], d = 2 [mmp-p]

$$V = \frac{2\pi fd}{2000} = \frac{2\times\pi\times50\times2}{2000} = 0.314 \text{ [m/s]}$$

$$A = \frac{(2\pi f)^2 d}{2000} = \frac{4\times\pi^2\times50^2\times2}{2000} = 98.7 \text{ [m/s^2]}$$
II) A = 100 [m/s²], V = 0.5 [m/s]

$$f = \frac{A}{2\pi V} = \frac{100}{2\times\pi\times0.5} = 31.8 \text{ [Hz]}$$

$$d = \frac{2000V^2}{A} = \frac{2000\times0.5^2}{100} = 5 \text{ [mmp-p]}$$

Please see the conversion chart (exchange table) on page 66 for calculations.

About [dB]

We use "dB" as a unit when describing the proportional relationship of physical quantities. Especially, in cases where one value is thousands or millions times a multiple of a reference value, then we use the logarithmic scale "dB" instead of a linear scale. This makes the values more sensible and is an industry standard practice. "dB" is expressed by the following

a = 20 log $\frac{A_1}{A_2}$ [dB]

A1 = Comparison value Ao = Reference value

One million times is:

 $a = 20 \log \frac{1,000,000}{1000} = 120 [dB]$

Not only does dB reduce the number of digits (smaller numbers to handle) but it also simplifies calculations. For example, adding 25 dB and 30 dB makes 55 dB, but if you do it in a linear way:

```
25 [dB] = 20 log A A = 10^{\frac{25}{20}} = 17.78
30 [dB] = 20 \log B B = 10^{\frac{30}{20}} = 31.62
A×B = 17.78×31.62 = 562.3 = 20 log 562.3 = 55 [dB]
```

Now you see you can use addition instead of multiplication by using "dB". That is to say, it is very easy to calculate by using "dB" The following is a conversion table for "dB" and multiples.

dB	0	0.1	1	3	6	10	20	30	40	60
Multiple	1	1.01	1.12	1.41	2.0	3.16	10	31.6	100	1000
dB	0	-0.1	-1	-3	-6	-10	-20	-30	-40	-60
Multiple	1	0.99	0.891	0.709	0.501	0.316	0.1	0.0316	0.01	0.001

Use of a logarithmic graph

We often use a logarithmic graph when we need to plot data for vibration testing or other physical phenomena.

59

On the linear graph, we can read 20 for Y when X is 100. But we can hardly read Y when X is 10 or 1, whereas on the logarithmic graph we can read the value even if it is 1/100 or 1/1000 of the maximum value. We use a logarithmic graph for such a benefit.

Sine test graph

We often use the graph below when running a Sine vibration test. This is a log-log graph that was discussed above. Asymptotes of constant displacement, velocity and acceleration are shown. Here is an example of an asymptote of constant velocity. From the formulae we learned before

	A: Acceleration
A = 2πfV	f: Frequency
	V: Velocity

From this equation we can read that acceleration A is increased 10 times when frequency f is also increased 10 times. On the graph below, we see that the acceleration increases to 100 m/s² from 10 m/s² as the frequency increases from 10 Hz to 100 Hz. In the case of constant displacement

A =
$$(2\pi f)^2 D$$
 D : Displacement

The equation shows that acceleration A is increased by 100 (10²) times when the frequency f is increased by 10 times, acceleration being proportioned to the second power of displacement. On the graph below, we can read that the acceleration increases to 100 m/s² from 1 m/s² as the frequency increases to 10 Hz from 1 Hz.

The graph shows the asymptotes when velocity or displacement stavs constant.

For installation of vibration test systems

Vibration insulation for a vibration generator

When using a vibration generator, the vibration is transmitted to the building and other facilities through the floor.

Particularly in the frequency range of 2 Hz to 20 Hz, even a small proportion of vibration from the vibration generator can have a large effect on buildings because they have their own resonances in this frequency range.

Therefore, a vibration generator needs a vibration isolation system. The following shows some examples.

1) No insulation

F: Force All the force generated by the vibration system

All the force generated by the vibration system is transmitted into the floor. This may excite resonances in the building and adjacent facilities. The vibration generator itself may sometimes jump up and down.

2) Body suspension

Air springs IMV uses this method of vibration isolation except in the case of the small, compact shaker range. This may limit a shaker system's maximum displacement when the operating frequency is low. See "Limitation of maximum displacement"

3) Bottom suspension

This has a similar effect of vibration isolation

but it can also cause lateral motion at low frequency.

4) Isolated foundation

This is the best method of vibration isolation. Generally, the mass of the foundation block should be at least ten times heavier than the rated force of the system. Typically, the mass of the foundation should be twenty times heavier. If you are interested in this method of isolation, please contact IMV.

Limitation of maximum displacement

There are several methods for vibration isolation. All of these ways create limitations in maximum displacement.

In body isolation, the vibration generator body reacts against the movement of the specimen.

This will cause the vibration generator body to be excited by the reaction force. If the shaker excitation frequency is 2-7 Hz, this may coincide with the resonant frequency of the armature suspension system and the body suspension system. The armature and body motion could be almost in "anti-phase", resulting in the absolute value of the available armature displacement becoming severely limited. Typically only 10 mmp-p displacement is available from a 51 mmp-p-rated vibration generator.

If using an "isolated foundation", the effective mass of the foundation plus vibration generator body could be much heavier than specimen + armature assembly. Therefore, limitation for the available displacement becomes negligible.

Noise control

When the vibration test system is installed, it is necessary to think about the noise. There are several sources of noise, such as excitation noise, suction noise (for air-cooled systems), blower noise, blower exhaust noise, cooling fan noise of the power amplifier, etc.

The shaker excitation noise might exceed 100 dBA at a typical maximum acceleration of 980 m/s². The suction noise is about 90 dBA, and blower noise + blower exhaust noise is about 80 dBA. However, these figures can differ depending on the shaker model.

1) Installing the blower outside the room

This is a common and straightforward method.

The blower noise and the blower exhaust noise are reduced in the test area. However, this method doesn't change the suction noise or the excitation noise of the vibration generator.

*The blower cannot be installed outdoors.

2) Soundproof box

A. Vibration generator and blower

This method reduces the excitation noise and the blower noise. *While the blower is stopped, taking measures to prevent air backflow is recommended.

B. Vibration generator only (blower outside the room)

The excitation noise and the air inlet noise are lowered Placing the blower outside the room is recommended. *The blower cannot be installed outdoors.

61

C. Soundproof box only for the blower

The blower noise is reduced

This method doesn't change the suction noise nor the excitation noise of the vibration generator.

*While the blower is stopped, taking measures to prevent air backflow is recommended.

3) Concentrated suction type

The suction noise of the vibration generator falls by about 5 dB. The main purpose of concentrated suction is to take air from the outside without using the air in the room to cool the shaker (typically used for clean rooms, etc.). *The blower cannot be installed outdoors.

Mechanism of vibration test systems

Mechanism of vibration test systems

Electrodynamic vibration test systems

This principle is similar to audio systems where electronic signals from different sources (e.g. CDs) are amplified and converted to sound by loudspeakers. For vibration test systems, the vibration generators correspond to the loudspeakers of the audio systems. They have vibration controllers instead of a sound source to drive the vibration generators feeding the electric current through the amplifiers. The difference is that the signals from the transducers mounted on the specimens and/or vibration tables to monitor their motions are fed back to the vibration controllers in order to control the vibrations and meet the requested test conditions.

Vibration generator

The operating principle is based on Fleming's "left hand rule". When an electric current flows into a wire within a magnetic field, it creates a force perpendicular both to the field and the direction of the current.

Vibration controller

The original waveforms will not be reproduced by merely applying the vibration data obtained in the field or from test specimens. The waveforms will be totally deformed due to the characteristics of the amplifiers and combined dynamics of the vibration generators and test specimens. The vibration controllers cause the vibration generators to generate the designated vibration and automatically compensate for these dynamics. All IMV vibration controllers are customized for each of our clients in order to meet their particular needs. We always put the customer first and make our products user-friendly.

Power amplifier

The role of the power amplifier is to feed driving current to the vibration generator, converting the small electrical signal generated in the vibration controller to the large current of higher voltage. IMV's power amplifiers employ the switching amplifier system. They use mainly the compact and highly efficient power modules of the top level in this industry to contribute to energy and space-saving.

Power module SA-320

Principles of operation

Power amplifier

Vibration Generator

Vibration generator

Vibration controller

The operation principle is based on Fleming's "left hand rule".

The formula below represents Fleming's "left hand rule".

Cooling method of vibration generator

The vibration test system can employ either of two methods to cool: air- or water-cooling. Each method has its own key features. You can select a cooling method that meets your installation requirements based on the key features listed below.

Cooling method	Air cooling	Water cooling
How it works	Cools the coils by using air from outside. Forces exhaust by blower.	The coils are made of pipe and distilled water is circulated to cool the coils using a heat exchanger and a cooling water.
Key features	Employs only a blower as cooling equipment. Easy to install.	Operation noise is significantly lower compared to air cooling.
Points to ponder	Duct connection or soundproof treatments may be necessary for reducing suction noise from the vibration generator and exhaust noise from the blower.	A primary water-cooling facility is necessary

Power amplifier

A power amplifier in the system supplies electric power to the vibration generator. The power amplifier generates a higher current of higher voltage in response to low power electric signals from the vibration controller.

Invention with IMV's originality

Original technology utilized to improve durability and performance of vibration generators

Upper (armature) support system PS guide

The vibration generator receives dynamic stress from its own vibration. The patented Parallel Support Guide (PSG) design can support the armature. PSG significantly improves durability, reliability of the system, and quality of vibration at the same time. This compact design provides enough

stiffness to exceed functions of the roller support system and achieves high durability, producing a self-holding supporting system through the alternative alignment of uniquely-curved gears.

Vibration generator cross section view (image)

Large allowance for eccentric moment

When the table working surface of the vibration generator is not wide enough to mount the specimen, it must be expanded using a fixture or auxiliary table. Large lateral rigidity of the table guidance systems is important, because it is difficult to place the center of gravity of the specimen on the center line of the vibration table. The larger the specimen is, the more important this becomes. Our PS guidance system (Parallel Support Guide) realizes a 130% increase in rigidity over conventional models with the same force range. It has enabled specimens whose centers of gravity are not located on the center line of the vibration table to be tested at a higher acceleration.

Compatibility of lateral rigidity and waveform regeneration accuracy

Usually lateral rigidity and waveform accuracy conflict with each other. The PS Guidance system makes their compatibility possible. It enables vibrations of lower waveform distortion to be combined with high fidelity.

Improvement of durability

System lifespan has been increased by 10 times (compared to conventional systems), lengthening intervals between maintenance.

Flexibility to respond to demand for large displacement tests

Flexibility enables the system to respond to demand for 100 mm-stroke vibration tests.

Conversion Table

Relationship between frequency, displacement, velocity and acceleration in sine vibration testing

f: Frequency [Hz] Note: D,V and A are in single amplitude

Example

- 1) f=50 Hz, D=1 mm V=31 cm/sec, A=99 m/sec² 2) f=100 Hz, V=100 cm/sec D=1.6 mm, A=630 m/sec² 3) f=600 Hz, A=60 m/sec²
- D=0.0042 mm(4.2 µm), V=1.6 cm/sec

IMV Test Laboratory Network

IMV's test laboratory network provides full support to customers

IMV's full service offerings make us the customer's partner of choice

Since 1988, IMV has been pioneering the test laboratory business in Japan. IMV opened six test laboratories in Japan and two overseas. IMV's test experts solve problems with the highest quality and using the most advanced test systems. IMV has worked on over 20,000 test projects.

Certified to ISO/IEC 17025

IMV's test laboratories are authorized and operating under quality control management systems in accordance with the international standard ISO/IEC 17025, which specifies testing capabilities and test laboratory calibration.

[Outline of Japanese lab 1) Certification number 2) Authorization organisation 3) Authorization date 4) Authorized field	<i>y</i> –	
[Outline of Thai laborato 1 Certification number 2 Authorization organisation 3 Authorization date 4 Authorized field	: 4784.01	
[Outline of Vietnam lab (1) Certification number (2) Authorisation organisation (3) Authorisation date (4) Authorized field	5-	

e-Test Centre Japan

Focused on solving problems for our customers, the latest test laboratory brings together Japan's technology for reliability evaluation. Companies complement each other, offering high value-added services such as precise analysis, new test methods, development of new facilities and so on. EMC testing has been carried out by dedicated engineers since November 2019.

- Reliability evaluation test for e-mobility parts such as large-sized motor or inverter of EV/HEV
- Evaluation of large parts (e.g. 220 lbf); 1m is possible while the part is in operation
- Various environmental tests such as high-stress temperature cycle test or salt spray test
- Ultra-high temperature (1652°F) chamber combined vibration test is available
- EMC testing by dedicated engineers
- Full security system

Chamber Combined Vibration Test System with a Slip Table

High-Stress Temperature Cycle Test System

Advanced Technology Centre for Environmental Testing

In order to meet future needs, we installed a full range of vibration test systems for battery testing and very large specimens. ATC is a facility that takes into consideration the IT environment and the security of information based on ISO 27001.

- Installed Japan's largest vibration test system, 78,700 lbf
- Lithium-ion battery testing for EV/HEV
- Installed a large earthquake-resistance test system capable of reproducing earthquake waves
- High-velocity shock test is available
- Full security system

The world's largest 350 kN Vibration Test System with a Slip Table

3-axis Large Earthquake-Resistance Vibration Test System

IMV's test laboratory network provides full support to customers

67

4102-142 Miyadera, Iruma, Saitama, 358-0014, Japan Tel:+81-4-2009-1043 Fax: +81-4-2009-1044 E-mail : info-etcj@imv-corp.com

Cyclic Corrosion Test System

Anechoic chamber

2193-28, Yatsusawa, Uenohara-shi, Yamanashi, 409-0133, Japan Tel:+81-554-62-6677 Fax:+81-554-62-6678 E-mail : info-uenohara@imv-corp.com

Chamber-Combined Vibration Test System with a Slip Table

Uenohara site

Parts Center (MI)

69

Demonstration Centre

Model

System Layout

Installation Example

Primary

Power supply for vibration shaker		AC		V
Power supply for controller				V
• Air				psi
Water *primary				
Water *secondary				
Diameter of air duct horse				
Recommended installation space	W	D	Н	in

*Room layout can be changed to suit the customer's needs.